- 278.42 KB
- 2022-04-01 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
15.3分式方程(一)
知识回顾:1.观察这是个什么方程?2.什么叫一元一次方程?(整式方程)①只含有一个未知数x②未知数x的次数为1③各项都是整式3.解一元一次方程的一般步骤有哪些?解:去分母去括号移项合并同类项系数化1
说说两方程有何异同一艘轮船在静水中的最大航速为20千米/时,它沿江以最大航速顺流航行100千米所用时间,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少?解:设江水的流速为v千米/时,则顺水速度为____千米/时;逆水速度为______千米/时;根据题意,得情境问题
分式方程像这样,分母中含有未知数的方程叫做分式方程。
下列方程中,哪些是分式方程?哪些整式方程.整式方程分式方程
解得:下面我们一起研究下怎么样来解分式方程:方程两边同乘以(20+v)(20-v),得:在解分式方程的过程中体现了一个非常重要的数学思想方法:转化的数学思想(化归思想)。探究检验:将v=5代入分式方程,左边=4=右边,所以v=5是原分式方程的解。一元一次方程转化
从去分母后所得的整式方程中解出的x+5=10能使分式方程的分母为0的解解分式方程:解:方程两边同乘以最简公分母(x-5)(x+5),得:解得:x=5检验:将x=5代入x-5、x2-25的值都为0,相应分式无意义。所以x=5不是原分式方程的解。∴原分式方程无解。增根
增根的定义增根:由去分母后所得的整式方程解出的,使分母为零的根.使最简公分母值为零的根······产生的原因:
思考1、上面两个分式方程中,为什么10020+V6020-V=去分母后得到的整式方程的解就是它的解,而去分母后得到的整式方程的解却不1x-510=x2-25是原分式方程的解呢?1x-510=x2-25我们来观察去分母的过程10020+V6020-V=100(20-v)=60(20+v)x+5=10两边同乘(20+v)(20-v)当v=5时,(20+v)(20-v)≠0两边同乘(x+5)(x-5)当x=5时,(x+5)(x-5)=0分式两边同乘了不为0的式子,所得整式方程的解与分式方程的解相同.分式两边同乘了等于0的式子,所得整式方程的解使分母为0,这个整式方程的解就不是原分式方程的解.
2、怎样检验所得整式方程的解是否是原分式方程的解?将整式方程的解代入最简公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解,否则这个解就不是原分式方程的解.思考
解分式方程的一般步骤解分式方程的思路是:分式方程整式方程去分母一化二解三检验归纳提升分式方程整式方程a是分式方程的解X=aa不是分式方程的解去分母解整式方程检验目标最简公分母不为0最简公分母为0
例:解分式方程
练习:解分式方程
解分式方程容易犯的错误有:(1)去分母时,原方程的整式部分漏乘.(2)约去分母后,分子是多项式时,没有注意添括号.(因分数线有括号的作用)(3)增根不舍掉。
1.当m=0时,方程会产生增根吗?思考:3.当m为何值时,方程会产生增根呢?2.当m=1时,方程会产生增根吗?
教师指导小结1、解分式方程的思路是:分式方程整式方程去分母2、解分式方程的一般步骤:一化二解三检验1、在方程的两边都乘以最简公分母,约去分母,化成整式方程.2、解这个整式方程.3、把整式方程的解代入最简公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解;否则,这个解不是原分式方程的解,必须舍去.4、写出原方程的根.
让我们一起加油:作业:习题16.3:(2、4、6、8)
试一试:解分式方程2)解关于x的方程:
例2:k为何值时,方程产生增根?问:这个分式方程何时有增根?答:这个分式方程产生增根,则增根一定是使方程中的分式的分母为零时的未知数的值,即x=2。问:当x=2时,这个分式方程产生增根怎样利用这个条件求出k值?答:把含字母k的分式方程转化成含k的整式方程,求出的解是含k的代数式,当这个代数式等于2时可求出k值。
例2:k为何值时,方程产生增根?解:方程两边都乘以x-2,约去分母,得k+3(x-2)=x-1把x=2代入以上方程得:K=1所以当k=1时,方程产生增根。
例3:k为何值时,分式方程有增根?方程两边都乘以(x-1)(x+1),得x(x+1)+k(x+1)-x(x-1)=0解:把x=1代入上式,则k=-1把x=-1带入上式,k值不存在∴当k=-1,原方程有增根。
1、指出下列方程中的分式方程:
x+5=10解分式方程:解:方程两边同乘以最简公分母(x-5)(x+5),得:解得:x=5检验:将x=5代入x-5、x2-25的值都为0,相应分式无意义。所以x=5不是原分式方程的解。∴原分式方程无解。分式方程有意义的条件是______.X≠±5整式方程有意义的条件是______.任意实数当x=5时,(x-5)(x+5)=_____0
相关文档
- 八年级上数学课件八年级上册数学课2022-04-015页
- 八年级上数学课件八年级上册数学课2022-04-0113页
- 八年级上数学课件《轴对称的性质》2022-04-0110页
- 八年级上数学课件《勾股定理的简单2022-04-0117页
- 八年级上数学课件八年级上册数学课2022-04-0118页
- 八年级上数学课件《函数》 (16)_苏2022-04-0119页
- 八年级上数学课件《勾股定理》 (102022-04-0111页
- 八年级上数学课件全章热门考点整合2022-04-0126页
- 八年级上数学课件12-1-2分式的约分2022-04-0129页
- 八年级上数学课件- 14-3-2 公式法2022-04-0116页