- 980.18 KB
- 2022-04-01 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
第十七章勾股定理17.1勾股定理
星期日老师带领初二全体学生去凌峰山风景区游玩,同学们看到山势险峻,查看景区示意图得知:凌峰山主峰高约为900米,如图:为了方便游人,此景区从主峰A处向地面B处架了一条缆车线路,已知山底端C处与地面B处相距1200米,,请问缆车路线AB长应为多少?问题情境
看一看
数学家毕达哥拉斯的发现:(1)A、B、C的面积有什么关系?(2)直角三角形三边有什么关系?ABC
ABCABC(图中每个小方格代表一个单位面积)图1图2探究一:等腰直角三角形三边关系A的面积(单位面积)B的面积(单位面积)C的面积(单位面积)图1图299
ABCABC(图中每个小方格代表一个单位面积)图1图2分“割”成若干个直角边为整数的三角形(单位面积)
ABCABC(图中每个小方格代表一个单位面积)图1图2SA+SB=SCA的面积(单位面积)B的面积(单位面积)C的面积(单位面积)图19918图2A、B、C面积关系直角三角形三边关系448两直角边的平方和等于斜边的平方
ABC图3ABC图4分割成若干个直角边为整数的三角形(单位面积)一般的直角三角形三边关系探究二:
ABCacbSA+SB=SC如果直角三角形的两条直角边长分别是a、b,斜边长为c.猜想:两直角边a、b与斜边c之间的关系?a2+b2=c2结论:直角三角形中,两条直角边的平方和,等于斜边的平方.
这是2002年国际数学家大会会徽赵爽弦图∵ab×4+(b-a)²=c²∴a²+b²=c²abc2ab+(b²-2ab+a²)=c²
此结论被称为“勾股定理”.在Rt△ABC中∠C=900,边BC、AC、AB所对应的边分别为a、b、c则存在下列关系,结论:直角三角形中,两条直角边的平方和,等于斜边的平方.a2+b2=c2勾股弦cabBCA
如果直角三角形的两直角边分别为a,b,斜边为c,那么a2+b2=c2.即直角三角形两直角边的平方和等于斜边的平方.勾股定理∵∠C=90°∴a2+b2=c2cabBCA
分析:已知△ABC中,,AC=900米,BC=1200米,求斜边AB的长.例1.星期日老师带领初二全体学生去凌峰山风景区游玩,同学们看到山势险峻,查看景区示意图得知:凌峰山主峰高约为900米,如图:为了方便游人,此景区从主峰A处向地面B处架了一条缆车线路,已知山底端C处与地面B处相距1200米,请问缆车路线AB长应为多少?
在直角三角形ABC中,∠C=900,∠A、∠B、∠C所对的边分别为a、b、c(1)已知a=1,b=2,求c(2)已知a=10,c=15,求b小试牛刀ACBbac
例2:将长为5米的梯子AC斜靠在墙上,BC长为2米,求梯子上端A到墙的底端B的距离.CAB解:在Rt△ABC中,∠ABC=90°∵BC=2,AC=5∴AB2=AC²-BC²=5²-2²=21∴AB=(米)(舍去负值)
求下列图中表示边的未知数x、y、z的值.①81144xyz②③做一做625576144169X=15Y=5Z=7
比一比看谁算得又快又准!求下列直角三角形中未知边的长x:8x171620x125x做一做X=15X=12X=13
1、直角ABC的两直角边a=5,b=12,c=_____2、直角ABC的一条直角边a=10,斜边c=26,则b=().3、已知:∠C=90°,a=6,a:b=3:4,求b和c.cab13b=8c=1024比一比课堂反馈
读一读我国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦.图1-1称为“弦图”,最早是由三国时期的数学家赵爽在为《周髀算经》作法时给出的.图1-2是在北京召开的2002年国际数学家大会(TCM-2002)的会标,其图案正是“弦图”,它标志着中国古代的数学成就.图1-1图1-2
两千多年前,古希腊有个哥拉斯学派,他们首先发现了勾股定理,因此在国外人们通常称勾股定理为毕达哥拉斯年希腊曾经发行了一枚纪念票。定理。为了纪念毕达哥拉斯学派,1955勾股世界国家之一。早在三千多年前,国家之一。早在三千多年前,国家之一。早在三千多年前,国家之一。早在三千多年前,国家之一。早在三千多年前,国家之一。早在三千多年前,国家之一。早在三千多年前,国家之一。早在三千多年前两千多年前,古希腊有个毕达哥拉斯学派,他们发现了勾股定理,因此在国外人们通常称勾股定理为毕达哥拉斯定理。为了纪念毕达哥拉斯学派,1955年希腊曾经发行了一枚纪念邮票.我国是最早了解勾股定理的国家之一。早在三千多年前,周朝数学家商高就提出,将一根直尺折成一个直角,如果勾等于三,股等于四,那么弦就等于五,即“勾三、股四、弦五”,它被记载于我国古代著名的数学著作《周髀算经》中.