- 123.50 KB
- 2021-10-26 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
2.7 回顾与思考
学习目标
(一)学习知识点
1.不等式的基本性质.
2.解一元一次不等式以及在数轴上表示不等式的解集.
3.利用一元一次不等式解决实际问题.
4.一元一次不等式与一次函数.
5.一元一次不等式组及其应用.
(二)能力训练要求
通过回顾本章内容,培养学生归纳总结能力,以及用数学知识解决实际问题的能力.
(三)情感与价值观要求
利用不等式及不等式组的知识去解决实际问题,让学生体会数学与自然及人类社会的密切联系,了解数学的价值,增进学生对数学的理解和学好数学的信心.
学习重点 掌握本章所有知识.
学习难点 利用本章知识解决实际问题.
学习方法 教师指导学生自己归纳总结法.
学习过程
一、创设问题情境,引入新课
我们已经学完了本章的全部内容,这节课大家一起来进行回顾.
二、新课讲授
1.大家来简要概括一下本章的知识点些?
由现实生活中的不等关系推导出不等式的意义,并能根据条件列出不等式;
类比等式的性质,推导不等式的有关性质以及等式性质与不等式性质的异同;
根据不等式的性质求解不等式,并能利用不等式解决实际问题;
一元一次不等式与一次函数;
一元一次不等式组及其应用.
下面我们分别详细地回顾总结.
2.重点知识讲解
(1)不等式的基本性质:
不等式的基本性质1:不等式的两边都加上(或减去)同一个整式,不等号的方向不变.
不等式的基本性质2:不等式的两边都乘以(或除以)同一个正数,不等号的方向不变.
不等式的基本性质3:不等式的两边都乘以(或除以)同一个负数,不等号的方向改变.
不等式的基本性质与等式的基本性质有哪些异同点?
不等式的基本性质有三条,等式的基本性质有两条;两个性质中在两边都加上(或都减去)同一个整式时,结果相似;在两边都乘以(或除以)同一个正数时,结果相似;在两边都乘以(或除以)同一个负数时,结果不同.
两个性质可以对比如下:
等式
不等式
两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式
两边都加上(或减去)同一个整式,不等号的方向不变
两边都乘以(或除以)同一个数(除数不为0),所得结果仍是等式
两边都乘以(或除以)同一个正数,不等号的方向不变两边都乘以(或除以)同一个负数,不等号的方向改变
例题讲解:下列方程或不等式的解法对不对?为什么?
(1)-x=6,两边都乘以-1,得x=-6
5
(2)-x>6,两边都乘以-1,得x>-6
(3)-x≤6,两边都乘以-1,得x≤-6
[解](1)正确.因为符合等式的性质.
(2)、(3)错误.根据不等式的基本性质3,在不等式两边都乘以-1,不等号的方向要改变,而(2)、(3)都没改变,所以错误.
(2)解一元一次不等式和解一元一次方程有什么异同?
解一元一次不等式的步骤有哪些?
解一元一次不等式的步骤有:
去分母;去括号;移项;合并同类项;系数化成1.
下面我们对比地学习解一元一次不等式与解一元一次方程的异同.
解一元一次方程
解一元一次不等式
解法步骤
(1)去分母;
(2)去括号;
(3)移项;
(4)合并同类项;
(5)系数化成1
(1)去分母;
(2)去括号;
(3)移项;
(4)合并同类项;
(5)系数化成1
在步骤(1)和(5)中,要注意不等式号方向是否改变
解的情况
一元一次方程只有一个解
一元一次不等式的解集含有无限多个数
[例题]下面不等式的解法对不对?为什么?
(1)7x+5>8x+6
7x-8x>6-5
-x>1 ∴x>-1
(2)6x-3<4x-4
6x-4x<-4+3
2x<-1 ∴x>.
解:(1)不对.在不等式两边都乘以-1时,不等号的方向应改变.应为x<-1.
(2)不对.在不等式的两边都除以2时,不等号的方向不变,且不能丢掉“-”号,应为
2x<-1 ∴x<-.
(3)举例说明在数轴上如何表示一元一次不等式(组)的解集.
解下列不等式或不等式组,并把它们的解集在数轴上表示出来.
(1)2(x-3)>4;(2)2x-3≤5(x-3);
(3)(4)
解:(1)去括号,得2x-6>4
移项、合并同类项,得2x>10
两边都除以2,得x>5.
这个不等式的解集在数轴上表示如下:
(2)去括号,得2x-3≤5x-15
5
移项、合并同类项,得-3x≤-12
两边都除以-3,得x≥4.
这个不等式的解集在数轴上表示如下:
(3)
解不等式(1),得x<1
解不等式(2),得x>-2
在同一条数轴上表示不等式(1)、(2)的解集:
所以,原不等式组的解集为-2<x<1.
(4)
解不等式(1)、(2),得x<1, x>2.
在同一条数轴上表示不等式(1)、(2)的解集:
所以,原不等式组的解集为无解.
解一元一次不等式组求公共部分时:
“同大取大,同小取小,
大于小数小于大数居中间,
大于大数小于小数无解”
(4)说一说运用不等式解决实际问题的基本过程.
用类比的方法,比较列方程解应用题的步骤,猜想出用不等式解决实际问题的步骤.
暑假期间,两名家长计划带领若干名学生去旅游,他们联系了报价均为每人500元的两家旅行社,经协商,甲旅行社的优惠条件是:两名家长全额收费,学生都按七折收费;乙旅行社的优惠条件是家长、学生都按八折收费.假设这两位家长带领x名学生去旅游,他们应该选择哪家旅行社?
解:设选择甲旅行社所需费用为y1元,选择乙旅行社所需费用为y2元,则
y1=500×2+70%×500x=350x+1000
y2=80%×500(x+2)=400(x+2)=400x+800
当y1=y2时,350x+1000=400x+800
解得x=4;
当y1>y2时,350x+1000>400x+800
解得x<4;
当y1<y2时,350x+1000<400x+800
解得x>4.
所以,当学生人数为4人时,甲、乙两家旅行社的收费相同;当学生人数少于4人时,选择乙旅行社;当学生人数多于4人时,选择甲旅行社.
总结一下基本过程
①审题,设未知数;
5
②找不等关系;
③列不等式;
④解不等式;
⑤写出答案.
(5)一元一次不等式与一次函数.
如函数y=2x-5,当y>0时,有2x-5>0,当y<0时,有2x-5<0.
三.课堂练习:解下列不等式或不等式组:
(1)3(2x+5)>2(4x+3);
(2)10-4(x-3)≤2(x-1);
(3);
(4)
解:(1)去括号,得6x+15>8x+6
移项、合并同类项,得2x<9
两边都除以2,得x<.
(2)去括号,得
10-4x+12≤2x-2
移项、合并同类项,得6x≥24
两边都除以6,得x≥4.
(3)去分母,得5(x-3)>2(x+6)
去括号,得5x-15>2x+12
移项、合并同类项,得3x>27
两边都除以3,得x>9
(4)
解不等式(1),得x<0
解不等式(2),得x>0
这两个不等式的解集在同一数轴上表示为:
所以,原不等式组的解集为无解.
四、课时小结
回顾本章的知识点,并进行有关练习.
五、课后作业 复习题A组
六、活动与探究
某化工厂2000年12月在判定2001年某种化肥的生产计划时,收集到了如下信息:
1.生产该种化肥的工人数不超过200人;
2.每个工人全年工作时数不得多于2100个;
3.预计2001年该化肥至少可销售80000袋;
4.每生产一袋该化肥需要工时4个;
5
5.每袋该化肥需要原料20千克;
6.现库存原料800吨,本月还需用200吨,2001年可以补充1200吨.
请你根据以上数据确定2001年该种化肥的生产袋数的范围.
解:设2001年可生产该化肥x袋.由题意得
解得80000≤x≤90000且x为整数.
[答]2001年该化肥产量应确定在8万到9万袋之间.
七、学习反思:
5