- 183.50 KB
- 2021-10-27 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
2.5 矩 形
2.5.1 矩形的性质
1.理解并掌握矩形的性质定理及推论;(重点)
2.会用矩形的性质定理及推论进行推导证明;(重点)
3.会综合运用矩形的性质定理、推论以及特殊三角形的性质进行证明计算.(难点)[来源:学+科+网]
一、情境导入
如图,用四段木条做一个平行四边形的活动木框,将其直立在地面上轻轻地推动点D,你会发现什么?[来源:学_科_网]
可以发现,角的大小改变了,但不管如何,它仍然保持平行四边形的形状.
我们若改变平行四边形的内角,使其一个内角恰好为直角,就得到一种特殊的平行四边形,也就是我们早已熟悉的长方形,即矩形,如图所示.
二、合作探究
探究点一:矩形的性质
【类型一】 运用矩形的性质求线段长
矩形ABCD中,O是BC的中点,∠AOD=90°,矩形ABCD的周长为24cm,则AB的长为( )
[来源:学科网]
A.1cm B.2cm C.2.5cm D.4cm
解析:矩形ABCD中,O是BC的中点,∠AOD=90°,根据矩形的性质得到△ABO≌△DCO,则OA=OD,∠DAO=45°,所以∠BOA=∠BAO=45°,即BC=2AB,由矩形ABCD的周长为24cm,得24=2AB+2×2AB,解得AB=4cm.故选D.
方法总结:本题考查矩形的性质,矩形具有平行四边形的性质,又具有自己的特性,要注意运用矩形具备而一般平行四边形不具备的性质.
【类型二】 运用矩形的性质解决面积问题
如图,矩形ABCD的对角线的交点为O,EF过点O且分别交AB,CD于点E,F,则图中阴影部分的面积是矩形ABCD的面积的( )
A. B. C. D.
解析:∵矩形ABCD的边AB∥CD,∴∠ABO=∠CDO,在矩形ABCD中,OB=OD,在△BOE和△DOF中,∴△BOE≌△DOF(ASA),∴S△BOE=S△DOF,∴阴影部分的面积=S△AOB=S矩形ABCD.故选B.
方法总结:本题考查了矩形的性质,全等三角形的判定与性质,熟记性质并求出阴影部分的面积=S△AOB是解题的关键.
【类型三】 运用矩形的性质证明线段相等
如图,在矩形ABCD中,以顶点B为圆心、边BC长为半径作弧,交AD边于点E,连接BE,过C点作CF⊥BE于F.求证:BF=AE.
解析:利用矩形的性质得出AD∥BC,∠A=90°,再利用全等三角形的判定得出△BFC≌△EAB,进而得出结论.
证明:在矩形ABCD中,AD∥BC,∠A=90°,∴∠AEB=∠FBC,∵CF⊥BE,∴∠BFC=∠A=90°,由作图可知,BC=BE,在△BFC和△EAB中,∴△BFC≌△EAB(AAS),∴BF=AE.
方法总结:此题主要考查了全等三角形的判定与性质以及矩形的性质,得出△BFC≌△EAB是解题的关键.
【类型四】 运用矩形的性质证明角相等
已知:如图,在矩形ABCD中,E、F分别是边BC、AB上的点,且EF=ED,EF⊥ED.
求证:AE平分∠BAD.
解析:要证AE平分∠BAD,可转化为△ABE为等腰直角三角形,得AB=BE,又AB=CD,再将它们分别转化为两全等三角形的两对应边,根据全等三角形的判定和矩形的性质,可确定BE=CD,即求证.
证明:∵四边形ABCD是矩形,∴∠B=∠C=∠BAD=90°,AB=CD,∴∠BEF+∠BFE=90°.∵EF⊥ED,∴∠BEF+∠CED=90°.∴∠BFE=∠CED.∴∠BEF=∠EDC.在△EBF与△DCE中,∴△EBF≌△DCE(ASA).∴BE=CD.∴BE=AB.∴∠BAE=∠BEA=45°.∴∠EAD=45°.∴∠BAE=∠EAD,即AE平分∠BAD.
方法总结:矩形被每条对角线分成两个直角三角形,被两条对角线分成四个等腰三角形,因此矩形的问题可以转化到直角三角形或等腰三角形中去解决.[来源:学科网]
三、板书设计
矩形的性质;[来源:学科网ZXXK]
矩形的四个角都是直角;矩形的对角线相等.
平行四边形变形为矩形的过程的演示;生活中给人以矩形形象物体的播放;学生画矩形;学生探究矩形性质时看、猜、比、量、折、写、说等,让学生在体验、实践的过程中,扩大认知结构,发展能力,完善人格,更好地理解平行四边形与矩形之间的从属关系和内在联系,使课堂矩形教学真正落实到学生的发展上.