- 431.00 KB
- 2021-10-27 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
情景导入
如图,从电线杆离地面8米处向地面拉一条
钢索,如果这条钢索在地面的固定点距离电
线杆底部6m,那么需要多长的钢索?
在直角三角形中,任意两条边
确定了,另外一条边也随之确
定,三边之间存在着一种特定
的数量关系,事实上,古人发
现,直角三角形的三边长度的
平方存在着一种特殊的关系.
做一做
(1)在纸上画若干个直角三角形,分别测
量它们的三条边,看看三边长的平方间有怎
样的关系?
(2)如图,直角三角形三边的平方分别是
多少,它们满足上面所猜想的数量关系吗?
想一想填空,对于图1—3中的直角三角形,
是否还满足这样的关系?
A
B
C
A
B
C
图1-2
(1)
(2)
(1)观察图1-2(1)
正方形A中含有 个
小方格,即A的面积是
个单位面积.
正方形B的面积是
个单位面积.
正方形C的面积是
个单位面积.
9
9
9
18
你是怎样得到上面的结
果的?与同伴交流交流.
1 2 3
C
A
B
A
B
C
• • • ••
• •••••• ••• • ••
••• •• ••
正方形周边上
的格点数a=12
正方形内部的
格点数b=13
利用皮克公式 1S a b 12
所以,正方形C的
面积为:
(单位面积)
1 12 13 1 182
(1)
(2)
A
B
C
A
B
C
(图中每个小方格代表一个单位面积)
(1)
(2)
cS正方形
14 3 3 182
分割成若干个直角边
为整数的三角形
(单位面积)
A
B
C
A
B
C
(图中每个小方格代表一个单位面积)
(1)
(2)
cS正方形
21 62
18 (单位面积)
把C看成边长为6的
正方形面积的一半
A
B
C
A
B
C
(图中每个小方格代表一个单位面积)
(1)
(2)
(2)在图(2)中,正
方形A,B,C中各含
有多少个小方格?它
们的面积各是多少?
(3)你能发现图(1)
中三个正方形A,B,
C的面积之间有什么
关系吗?
SA+SB=SC
即:两条直角边上的正方形面积之和等于
斜边上的正方形的面积
A
B
C
图1-3
A
B
C
(1)观察图
1-3(1)(2) 并填
写下表:
A的面积
(单位面积)
B的面积
(单位面积)
C的面积
(单位面积)
图(1)
图(2)
16 9 25
4 9 13
你是怎样得
到表中的结
果的?与同
伴交流交流.
做一做
幻
灯
片
9
(1)
(2)
A
B
C
(1) A
B
C
(2)
分割成若干个直角边为
整数的三角形
cS正方形
25
14 4 3 12
(面积单位)
幻灯片 7
A
B
C
图1-3 A
B
C
图1-4
(2)三个
正方形A,
B,C的面
积之间有什
么关系?
SA+SB=SC
即:两条直角边上的正方形面积之和等于
斜边上的正方形的面积
(3)如果直角三角形的两个直角分别是1.6个单位
长度和2.4个单位长度,上面的猜想数量还成立吗?
说明你的理由.
成立
因为通过上面活动,同学们可以发现:直角三角形
的两直角边的平方和等于斜边的平方.我国古代把
直角三角形中较短的直角边称为勾,较长的直角边
称为弦.因此,我国称上面的结论为勾股定理
勾股定理(gou-gu theorem)
如果直角三角形两直角边分别为a、b,
斜边为c,那么
2 2 2a b c
即 直角三角形两直角边的平方和等
于斜边的平方.
a
b
c
勾
股
弦
在西方又称毕达
哥拉斯定理耶!
小明的妈妈买了一部29英寸(74厘
米)的电视机.小明量了电视机的屏幕
后,发现屏幕只有58厘米长和46厘米
宽,他觉得一定是售货员搞错了.你能
解释这是为什么吗?
我们通常所说的29
英寸或74厘米的电视
机,是指其荧屏对角
线的长度
274 54762 258 46 5480
∴售货员没搞错
∵
随
堂
练
习
荧屏对角线大约为74厘米
小结
说说这节课你有什么收获?
作业
一、P4 习题1.1 第1、2、3、4题
二、准备4张全等的直角三角形纸片
a
b
c
相关文档
- 八年级上数学课件《函数》 (9)_苏2021-10-2720页
- 八年级上数学课件《轴对称的性质》2021-10-2716页
- 八年级上数学课件八年级上册数学课2021-10-2729页
- 八年级上数学课件《轴对称与轴对称2021-10-2713页
- 八年级上数学课件第12章一次函数122021-10-2714页
- 八年级上数学课件- 12-1 全等三角2021-10-2727页
- 八年级上数学课件八年级上册数学课2021-10-2714页
- 八年级上数学课件阶段核心技巧 2021-10-2710页
- 八年级上数学课件- 11-3-2 多边形2021-10-2724页
- 八年级上数学课件八年级上册数学课2021-10-2723页