• 188.50 KB
  • 2021-10-27 发布

八年级下数学课件菱形的判定_鲁教版

  • 14页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
复习与回顾: 1.菱形的定义: 2.菱形的性质: 有一组邻边相等的平行 四边形叫做菱形。      菱 形 性 质 边 角 对角线 邻角互补 对边平行 四边相等 对角相等 对角线互相平分、 互相垂直且平分一 组对角 菱形的判定 1.菱形判定方法1: 有一组邻边相等的平行四边形叫做菱形。平行四边形 符号语言: ∵四边形ABCD是 平行四边形 AB=AD ∴ ABCD是菱形。 A B C D 菱形的判定 2.四条边相等的四边形是菱形吗? 已知:四边形ABCD中, AB=BC=CD=DA 求证:四边形ABCD是菱形。 菱形判定方法2:四条边相等的四边形是菱形 ∵AB=BC=CD=DA ∴四边形ABCD是菱形。 符号语言: A B C D 菱形的判定 3.观察与思考:如图,四边形ABCD的对角线 AC⊥BD,则四边形ABCD是不是菱形? 若 ABCD的对角线AC⊥BD ,则 ABCD是 不是菱形?为什么? 注: 对角线互相垂直的四边形不能判定为菱形。 C B D A D CA B 已知:在 ABCD 中,对角线AC⊥BD 求证: ABCD是菱形。 证明:∵四边形ABCD是平行四边形, ∴OB=OD 又∵AC⊥BD ∴ ABCD是菱形。 ∴AB=AD 菱形判定方法3: 对角线互相垂直的平行四边形是菱形。 ∵四边形ABCD是平行四边形, AC⊥BD, ∴ ABCD是菱形。 符号语言: C B D A O 练习巩固 一.选择: (一) 的平行四边形是菱形。( ) (二) 的四边形是菱形。 ( ) 1.一组邻边相等 2.四条边相等 3.对角线相等 4.对角线相等且互相平分 5.对角线互相垂直 6.对角线互相垂直且平分 1 5 2 6 例题解析: 已知: ABCD的对角线AC的垂直平分 线与边AD 、BC分别交于E、F 求证:四边形AFCE是菱形。 分析: (1)利用定义判定 B D CF EA O (2) 由已知可知 OA=OC,EF⊥AC. (3)利用四边相等,你会吗? 分析:四边形AFCE是菱形 AE=EC=CF=FA AE=EC AF=CF AE=AF EF 垂直平分AC ∠1= ∠2 ∠1= ∠3 ∠2= ∠3 AE∥FC 四边形ABCD 是平行四边形 AF=CF EF ⊥AC B D CF EA O 1 2 3 二.已知:如图,矩形ABCD的对角线 相交于点O,PD∥AC,PC∥BD,PD、 PC相交于点P。 (1)猜想:四边形PCOD是什么 特殊的四边形? (2)试证明你的猜想。 (3) PO与CD有怎样的关系? 四边形PCOD是菱形。 PO与CD互相垂直且平分 C A B O D P 一组邻边相等对角线互相垂直 四条边相等 五 种 判 定 方 法 四边形 平行四边形 菱形 菱形的判定方法: 小结: 作业: 1、已知: ABCD的对角线AC的垂直平分线与边AD 、 BC分别交于E、F 求证:四边形AFCE是菱形。 B D CF EA O 1 2 3 2、已知:如图,矩形ABCD的对角线相交于点O,PD∥AC, PC∥BD,PD、PC相交于点P。 (1)猜想:四边形PCOD是什么特殊的四边形? (2)试证明你的猜想。 C A B O D P G E F D C B A 已知,如图, ∠ ABC中, ∠ ACB=90,BE平分∠ ABC, CD AB于D,和BF交于点G , GE ∥ CA. 求证:CE和FG互相垂直平分。 2、已知如图,△ABC中AD平分∠BAC, DE∥AB交AC于F, DF∥AC交AB于E。四 边形AFDE是怎样的四边形?说明你的理由。 43 21 F E D CB A