- 2.39 MB
- 2021-10-27 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
11.1.1三角形的边
第十一章 三角形
导入新课 讲授新课 当堂练习 课堂小结
学习目标
1.认识三角形并会用几何语言表示三角形,了解三角
形分类.
2.掌握三角形的三边关系.(难点)
3.运用三角形三边关系解决有关的问题.(重点)
导入新课
情境引入
埃及金字塔
水
分
子
结
构
示
意
图
飞机机翼
问题:
(1)从古埃及的金字塔到现代的飞机,从宏伟的建筑
物到微小的分子结构,都有什么样的形象?
(2)在我们的生活中有没有这样的形象呢?试举例.
讲授新课
三角形的概念一
问题1:观察下面三角形的形成过程,说一说什么叫三角形?
定义:由不在同一条直线上的三条线段首尾顺次相接
所组成的图形叫作做三角形.
问题2:三角形中有几条线段?有几个角?
A
B C
有三条线段,三个角
边:线段AB,BC,CA是三角形的边.
顶点:点A,B,C是三角形的顶点,
角:∠A,∠B,∠C叫做三角形的内角,简称三角形的角.
记法:三角形ABC用符号表示________.
边的表示:三角形ABC的边AB、AC和BC可用小写字母分别表
示为________.
△ABC
c,a,b
边c 边b
边a 顶点C
角 角
角
顶点A
顶点B
B C
A
在△ABC中,
AB边所对的角是:
∠A所对的边是:
∠C
B C
再说几个对边与对角的关系试试.
辨一辨:下列图形符合三角形的定义吗?
不符合 不符合 不符合
①位置关系:不在同一直线上;②联接方式:首尾顺次.
u三角形应满足以下两个条件:
要点提醒
u表示方法:
三角形用符号“△”表示;记作“△ABC”,读作“三角形
ABC”,除此△ABC还可记作△BCA, △ CAB, △ ACB等.
找一找:(1)图中有几个三角形?用符号表示出这些三角形?
A
B C
D
E
5个,它们分别是△ABE,△ABC, △BEC,△BCD,△ECD.
(2)以AB为边的三角形有哪些?
△ABC、△ABE.
(3)以E为顶点的三角形有哪些?
△ ABE 、△BCE、 △CDE.
(4)以∠D为角的三角形有哪些?
△ BCD、 △DEC.
(5)说出△BCD的三个角和三个顶点所对的边.
△BCD的三个角是∠BCD、∠BDC、∠CBD.顶点B所对应的
边为DC,顶点C所对应的边为BD,顶点D所对应的边为BC.
三角形的分类二
问题1:观察下列三角形,说一说,按照三角形内角的大
小,三角形可以分为哪几类?
锐角三角形、直角三角形、钝角三角形.
(1)等腰三角形和等边三角形的区别是什么?
(2)从边上来说,除了等腰三角形和等边三角形还有什么样
的三角形?
(3)根据上面的内容思考:怎样对三角形进行分类?
等腰三角形两边相等,等边三角形三边相等.
三边都不相等的三角形.
问题2:如果以三角形边的元素的不同,三角形该如何分类呢?
观察图形回答下面各小题.
等边三角形 等腰三角形 不等边三角形
(
顶角
(
底角
(底角
u按是否有边相等分
三角形
不等边
三角形
等腰
三角形
底和腰不相等
的等腰三角形
等边三角形
u按内角大小分
三角形
锐角三角形
直角三角形
钝角三角形
腰
底边
判断:
(2)等边三角形是特殊的等腰三角形.( )
(1)一个钝角三角形一定不是等腰三角形.( )
√
×
(3)等腰三角形的腰和底一定不相等.( )×
(4)等边三角形是锐角三角形.( )
(5)直角三角形一定不是等腰三角形.( )×
√
在A点的小狗,为了尽快吃到B点的香肠,它
选择A B 路线,而不选择A C
B路线,难道小狗也懂数学?
C
BA
三角形的三边关系三
AC+CB>AB(两点之间线段最短)
归纳总结
三角形两边的和大于第三边.
三角形两边的差小于第三边.
议一议
1.在同一个三角形中,任意两边之和与第三边有什么大小关系?
2.在同一个三角形中,任意两边之差与第三边有什么大小关系?
3.三角形三边有怎样的不等关系?
通过动手实验同学们可以得到哪些结论?理由是什么?
例1:判断下列长度的三条线段能否拼成三角形?为什么?
(1)3cm、8cm、4cm; (2)5cm、6cm、11cm;
(3)5cm、6cm、10cm.
典例精析
判断三条线段是否可以组成三角形,只需说明两条较短
线段之和大于第三条线段即可.
解:(1)不能,因为3cm+4cm<8cm;
(2)不能,因为5cm+6cm=11cm;
(3)能,因为5cm+6cm>10cm.
归纳
针对训练
一根木棒长为7,另一根木棒长为2,那么用长度为4的木棒能
和它们拼成三角形吗?长度为11的木棒呢?若不能拼成,则第
三条边应在什么范围呢?
设x为三角形第三条边的长,则有两边之差<x<两边之和.
解:设第三边长为x,则应有
7-2b,x为
第三边)
应用
相关文档
- 八年级上数学课件八年级上册数学课2021-10-278页
- 八年级上数学课件《物体位置的确定2021-10-278页
- 八年级上数学课件《轴对称的性质》2021-10-278页
- 八年级上数学课件1-4-4分式的混合2021-10-2729页
- 八年级上数学课件《勾股定理》 (2)2021-10-2722页
- 八年级上数学课件《轴对称与轴对称2021-10-2723页
- 八年级上数学课件《用一次函数解决2021-10-2711页
- 八年级上数学课件- 13-1-1 等腰三2021-10-2722页
- 八年级上数学课件《平面直角坐标系2021-10-2719页
- 八年级上数学课件八年级上册数学课2021-10-2711页