- 128.50 KB
- 2021-10-27 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
13.4 课题学习 最短路径问题
通过对最短路径问题的探索,进一步理解和掌握两点之间线段最短和垂线段最短.
重点
应用所学知识解决最短路径问题.
难点
选择合理的方法解决问题.
一、创设情境
多媒体展示:如图,一个圆柱的底面周长为20 cm,高AB为4 cm,BC是底面的直径,一只蚂蚁从点A出发,沿着圆柱的侧面爬行到点C,试求出爬行的最短路径.
这是一个立体图形,要求蚂蚁爬行的最短路径,就是要把圆柱的侧面展开,利用“两点之间,线段最短”求出最短路径.那么怎样求平面图形中的最短路径问题呢?
二、自主探究
探究一:最短路径问题的概念
1.多媒体出示图①和图②,提出问题:
(1)图①中从点A走到点B哪条路最短?(2)图②中点C与直线AB上所有的连线中哪条线最短?
2.教师总结:“两点之间,线段最短”“连接直线外一点与直线上各点的所有线段中,垂线段最短”等问题,我们称之为最短路径问题.
探究二:河边饮马问题
多媒体出示问题1:牧马人从A地出发,到一条笔直的河边l饮马,然后到B地,牧马人从河边什么地方饮马,可使所走的路径最短?
提出问题:如果点A和点B分别位于直线的两侧,如何在直线l上找到一点,使得这个点到点A和点B的距离的和最短?
思考:如果点A和点B位于直线的同侧,如何在直线l上找到一点,使得这个点到点A和点B的距离的和最短?
教师引导学生讨论,明确找点的方法.
让学生对刚才的方法通过逻辑推理的方法加以证明.
2
教师巡视指导学生的做题情况,有针对性地进行点拨.
探究三:造桥选址问题
多媒体出示问题2.(教材第86页)
提出问题:
(1)根据问题1的探讨你对这道题有什么思路和想法?
(2)这个问题有什么不同?
(3)要保证路径AMNB最短,应该怎样选址?
学生对这个三个问题展开讨论,得出结论:要保证AMNB最短,就是要保证AM+MN+NB最小.
尝试选址作出图形.
多媒体展示教材图13.4-7,13.4-8,13.4-9,引导学生分析、观察,让学生根据刚才的分析,完成证明过程.
根据问题1和问题2,你有什么启示?
三、知识拓展
已知长方体的长为2 cm、宽为1 cm、高为4 cm,一只蚂蚁如果沿长方体的表面从A点爬到B′点,那么沿哪条路最近,最短的路程是多少?
[让学生讨论有几种爬行的方法,计算出每种方案中的路程,再进行比较]
四、归纳总结
1.本节课你学到了哪些知识?
2.怎样解决最短路径问题?
本节课以数学史中的一个经典问题——“将军饮马问题”为载体开展对“最短路径问题”的课题学习,让学生经历将实际问题抽象为数学问题的线段和最小问题,再利用轴对称将线段和最小的问题转化为“两点之间,线段最短”问题.
2