- 1.77 MB
- 2021-11-01 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
探
索
勾
股
定
理
在数学的天地里,
——毕达哥拉斯
重要的不是我们知道什么,
而是我们怎么知道什么。
ca
b
勾
股
弦
A
B
C
动手操作: 你能用四个全等的直角三角形拼出
正方形吗?
a
b c
a
b c
a
b c
a
b c
黄实
c
c
c
c a
a
a
a
b
?
赵爽弦图
a
a
a
a
b
b
b
b
c
cc
c
• 议一议:观察并计算,判断锐角三角形,钝角
三角形三边的长度是否满足a2 +b2=c2 ?
如果直角三角形两直角边分别为a、b,
斜边为c,那么 a2 + b2 = c2
(直角三角形两直角边的平方和等于斜边的平方)
勾股定理
ca
b
勾
股
弦
A
B
C
∵在Rt △ABC中, ∠C=90°
∴ a2 + b2 = c2
几何语言:
例:在Rt △ ABC中,∠C=90°
1)如果 b=4 , c =5 , 那么a = _____
3)如果 a =6 , b=8 , 那么 c = ____
已知直角三角形的任意两边可以求出第三边。
5
20
10
a
b
c
22 ba
22 bc
22 ac
求下图中表示面积的未知数x的值.
81
144
x
求下图中表示面积的未知数y的值.
y
625 576
求直角三角形中未知边的长。
x
108
求直角三角形中未知边的长。
12
5
x
勾股定理学习完之后,老师布置了这
样一道题目:“如果一个直角三角形的两
条边长分别是3厘米和4厘米,那么这个三
角形的第三边是多少?”, 小明看完后不
假思索的写下了这样的解答过程:
解:设第三边的长为X厘米.由勾股定理可得:
3 +4 =X
∴X =25
又∵X>0
∴X=5
你认为他的做法正确吗?如果不正确,应如何改正?
22 2
2
9
米
在台风“麦莎”的袭击中,一棵大树在离地
面9米处断裂,树的顶部落在离树根底部12米
处。这棵树折断之前有多高?
12米
A
B
C
两千多年前,古希腊有个哥拉
斯学派,他们首先发现了勾股定理,因此
在国外人们通常称勾股定理为毕达哥拉斯
年希腊曾经发行了一枚纪念票。
定理。为了纪念毕达哥拉斯学派,1955
国家之一。早在三千多年前,
国家之一。早在三千多年前,
国家之一。早在三千多年前,
国家之一。早在三千多年前,
国家之一。早在三千多年前,
国家之一。早在三千多年前,
国家之一。早在三千多年前,
国家之一。早在三千多年前
两千多年前,古希腊有个毕达哥拉斯
学派,他们首先发现了勾股定理,因此在
国外人们通常称勾股定理为毕达哥拉斯定
理。为了纪念毕达哥拉斯学派,1955年
希腊曾经发行了一枚纪念邮票。
我国是最早了解勾股定理的
国家之一。早在三千多年前,周
朝数学家商高就提出,将一根直
尺折成一个直角,如果勾等于三,
股等于四,那么弦就等于五,即
“勾三、股四、弦五”,它被记
载于我国古代著名的数学著作
《周髀算经》中。
这是1955年希腊
为纪念一位数学家曾
经发行的邮票。
34
5
2 2 23 +4 = 5
邮票的秘密
观察这枚邮票
图案小方格的个数,
你有什么发现?
勾股数:
3, 4, 5
6, 8, 10
5,12,13
9,12,15
…….
1 1
欣赏美丽的勾股树
2、本节课主要运用什么方
法来解决一些简单的实际
问题?
1、经过本节课的学习,你
有哪些收获?
小 结
经过本节课的学习,
你有哪些收获?
请和我们一起分享.
1、课本69页第1、2题
2、通过查找、翻阅有关勾股定理的
多种证明方法的资料,以小组为单位
办一份手抄报.
天空的幸福是穿一身蓝
森林的幸福是披一身绿
阳光的幸福是如钻石般耀眼
老师的幸福是因为认识了你们
愿你们努力进取,永不言败
致我亲爱的同学们: 谢 谢 大 家
相关文档
- 八年级下数学课件《平面直角坐标系2021-11-0133页
- 八年级下数学课件《一次函数的应用2021-11-0126页
- 八年级下数学课件:18-2-3 正方形 (2021-11-0131页
- 八年级下数学课件:18-1-1 平行四边2021-11-0123页
- 八年级下数学课件八年级下册数学课2021-11-0131页
- 八年级下数学课件《反比例函数的图2021-11-0119页
- 八年级下数学课件:20-1-2 中位数和2021-11-0115页
- 八年级下数学课件八年级下册数学课2021-11-0119页
- 八年级下数学课件八年级下册数学课2021-11-0110页
- 八年级下数学课件《用分解因式法解2021-11-0117页