- 344.64 KB
- 2021-11-06 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
2018年山东省泰安市中考数学试卷
一、选择题(本大题共12小题,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来,每小题选对得3分,选错、不选或选出的答案超过一个,均记零分)
1.(3分)计算:﹣(﹣2)+(﹣2)0的结果是( )
A.﹣3 B.0 C.﹣1 D.3
2.(3分)下列运算正确的是( )
A.2y3+y3=3y6 B.y2•y3=y6 C.(3y2)3=9y6 D.y3÷y﹣2=y5
3.(3分)如图是下列哪个几何体的主视图与俯视图( )
A. B. C. D.
4.(3分)如图,将一张含有30°角的三角形纸片的两个顶点叠放在矩形的两条对边上,若∠2=44°,则∠1的大小为( )
A.14° B.16° C.90°﹣α D.α﹣44°
22
5.(3分)某中学九年级二班六组的8名同学在一次排球垫球测试中的成绩如下(单位:个)
35 38 42 44 40 47 45 45
则这组数据的中位数、平均数分别是( )
A.42、42 B.43、42 C.43、43 D.44、43
6.(3分)夏季来临,某超市试销A、B两种型号的风扇,两周内共销售30台,销售收入5300元,A型风扇每台200元,B型风扇每台150元,问A、B两种型号的风扇分别销售了多少台?若设A型风扇销售了x台,B型风扇销售了y台,则根据题意列出方程组为( )
A. B.
C. D.
7.(3分)二次函数y=ax2+bx+c的图象如图所示,则反比例函数y=与一次函数y=ax+b在同一坐标系内的大致图象是( )
A. B. C. D.
8.(3分)不等式组有3个整数解,则a的取值范围是( )
A.﹣6≤a<﹣5 B.﹣6<a≤﹣5 C.﹣6<a<﹣5 D.﹣6≤a≤﹣5
22
9.(3分)如图,BM与⊙O相切于点B,若∠MBA=140°,则∠ACB的度数为( )
A.40° B.50° C.60° D.70°
10.(3分)一元二次方程(x+1)(x﹣3)=2x﹣5根的情况是( )
A.无实数根 B.有一个正根,一个负根
C.有两个正根,且都小于3 D.有两个正根,且有一根大于3
11.(3分)如图,将正方形网格放置在平面直角坐标系中,其中每个小正方形的边长均为1,△ABC经过平移后得到△A1B1C1,若AC上一点P(1.2,1.4)平移后对应点为P1,点P1绕原点顺时针旋转180°,对应点为P2,则点P2的坐标为( )
A.(2.8,3.6) B.(﹣2.8,﹣3.6) C.(3.8,2.6) D.(﹣3.8,﹣2.6)
12.(3分)如图,⊙M的半径为2,圆心M的坐标为(3,4),点P是⊙M上的任意一点,PA⊥PB,且PA、PB与x轴分别交于A、B两点,若点A、点B关于原点O对称,则AB的最小值为( )
22
A.3 B.4 C.6 D.8
二、填空题(本大题共6小题,满分18分。只要求填写最后结果,每小题填对得3分)
13.(3分)一个铁原子的质量是0.000000000000000000000000093kg,将这个数据用科学记数法表示为 kg.
14.(3分)如图,⊙O是△ABC的外接圆,∠A=45°,BC=4,则⊙O的直径为 .
15.(3分)如图,在矩形ABCD中,AB=6,BC=10,将矩形ABCD沿BE折叠,点A落在A'处,若EA'的延长线恰好过点C,则sin∠ABE的值为 .
16.(3分)观察“田”字中各数之间的关系:
则c的值为 .
17.(3分)如图,在△ABC中,AC=6,BC=10,tanC=,点D是AC边上的动点(不与点C重合),过D作DE⊥BC,垂足为E,点F是BD的中点,连接EF,设CD=x,△DEF的面积为S,则S与x之间的函数关系式为 .
22
18.(3分)《九章算术》是中国传统数学最重要的著作,在“勾股”章中有这样一个问题:“今有邑方二百步,各中开门,出东门十五步有木,问:出南门几步面见木?”
用今天的话说,大意是:如图,DEFG是一座边长为200步(“步”是古代的长度单位)的正方形小城,东门H位于GD的中点,南门K位于ED的中点,出东门15步的A处有一树木,求出南门多少步恰好看到位于A处的树木(即点D在直线AC上)?请你计算KC的长为 步.
三、解答题(本大题共7小题,满分66分。解答应写出必要的文字说明、证明过程或推演步骤)
19.(6分)先化简,再求值÷(﹣m﹣1),其中m=﹣2
20.(9分)文美书店决定用不多于20000元购进甲乙两种图书共1200本进行销售.甲、乙两种图书的进价分别为每本20元、14元,甲种图书每本的售价是乙种图书每本售价的1.4倍,若用1680元在文美书店可购买甲种图书的本数比用1400元购买乙种图书的本数少10本.
(1)甲乙两种图书的售价分别为每本多少元?
(2)书店为了让利读者,决定甲种图书售价每本降低3元,乙种图书售价每本降低2元,问书店应如何进货才能获得最大利润?(购进的两种图书全部销售完.)
22
21.(8分)为增强学生的安全意识,我市某中学组织初三年级1000名学生参加了“校园安全知识竞赛”,随机抽取一个班学生的成绩进行整理,分为A,B,C,D四个等级,并把结果整理绘制成条形统计图与扇形统计图(部分),请依据如图提供的信息,完成下列问题:
(1)请估计本校初三年级等级为A的学生人数;
(2)学校决定从得满分的3名女生和2名男生中随机抽取3人参加市级比赛,请求出恰好抽到2名女生和1名男生的概率.
22.(9分)如图,矩形ABCD的两边AD、AB的长分别为3、8,E是DC的中点,反比例函数y=的图象经过点E,与AB交于点F.
(1)若点B坐标为(﹣6,0),求m的值及图象经过A、E两点的一次函数的表达式;
(2)若AF﹣AE=2,求反比例函数的表达式.
23.(11分)如图,△ABC中,D是AB上一点,DE⊥AC于点E,F是AD的中点,FG⊥BC于点G,与DE交于点H,若FG=AF,AG平分∠CAB,连接GE,CD.
(1)求证:△ECG≌△GHD;
(2)小亮同学经过探究发现:AD=AC+EC.请你帮助小亮同学证明这一结论.
22
(3)若∠B=30°,判定四边形AEGF是否为菱形,并说明理由.
24.(11分)如图,在平面直角坐标系中,二次函数y=ax2+bx+c交x轴于点A(﹣4,0)、B(2,0),交y轴于点C(0,6),在y轴上有一点E(0,﹣2),连接AE.
(1)求二次函数的表达式;
(2)若点D为抛物线在x轴负半轴上方的一个动点,求△ADE面积的最大值;
(3)抛物线对称轴上是否存在点P,使△AEP为等腰三角形?若存在,请直接写出所有P点的坐标,若不存在请说明理由.
25.(12分)如图,在菱形ABCD中,AC与BD交于点O,E是BD上一点,EF∥AB,∠EAB=∠EBA,过点B作DA的垂线,交DA的延长线于点G.
(1)∠DEF和∠AEF是否相等?若相等,请证明;若不相等,请说明理由;
(2)找出图中与△AGB相似的三角形,并证明;
(3)BF的延长线交CD的延长线于点H,交AC于点M.求证:BM2=MF•MH.
22
22
2018年山东省泰安市中考数学试卷
参考答案与试题解析
一、选择题(本大题共12小题,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来,每小题选对得3分,选错、不选或选出的答案超过一个,均记零分)
1.
【解答】解:﹣(﹣2)+(﹣2)0
=2+1
=3,
故选:D.
2.
【解答】解:2y3+y3=3y3,A错误;
y2•y3=y5,B错误;
(3y2)3=27y6,C错误;
y3÷y﹣2=y3﹣(﹣2)=y5,
故选:D.
3.
【解答】解:由已知主视图和俯视图可得到该几何体是圆柱体的一半,只有选项C符合题意.
故选:C.
4.
【解答】解:如图,∵矩形的对边平行,
∴∠2=∠3=44°,
22
根据三角形外角性质,可得∠3=∠1+30°,
∴∠1=44°﹣30°=14°,
故选:A.
5.
【解答】解:把这组数据排列顺序得:35 38 40 42 44 45 45 47,
则这组数据的中位数为:=43,
=(35+38+42+44+40+47+45+45)=42,
故选:B.
6.
【解答】解:设A型风扇销售了x台,B型风扇销售了y台,
则根据题意列出方程组为:.
故选:C.
7.
【解答】解:由二次函数开口向上可得:a>0,对称轴在y轴左侧,故a,b同号,则b>0,
故反比例函数y=图象分布在第一、三象限,一次函数y=ax+b经过第一、二、三象限.
故选:C.
8.
22
【解答】解:不等式组,
由﹣x<﹣1,解得:x>4,
由4(x﹣1)≤2(x﹣a),解得:x≤2﹣a,
故不等式组的解为:4<x≤2﹣a,
由关于x的不等式组有3个整数解,
解得:7≤2﹣a<8,
解得:﹣6<a≤﹣5.
故选:B.
9.
【解答】解:如图,连接OA、OB,
∵BM是⊙O的切线,
∴∠OBM=90°,
∵∠MBA=140°,
∴∠ABO=50°,
∵OA=OB,
∴∠ABO=∠BAO=50°,
∴∠AOB=80°,
∴∠ACB=∠AOB=40°,
故选:A.
22
10.
【解答】解:(x+1)(x﹣3)=2x﹣5
整理得:x2﹣2x﹣3=2x﹣5,
则x2﹣4x+2=0,
(x﹣2)2=2,
解得:x1=2+>3,x2=2﹣,
故有两个正根,且有一根大于3.
故选:D.
11.
【解答】解:由题意将点P向下平移5个单位,再向左平移4个单位得到P1,
∵P(1.2,1.4),
∴P1(﹣2.8,﹣3.6),
∵P1与P2关于原点对称,
∴P2(2.8,3.6),
故选:A.
12.
【解答】解:∵PA⊥PB,
∴∠APB=90°,
∵AO=BO,
∴AB=2PO,
若要使AB取得最小值,则PO需取得最小值,
连接OM,交⊙M于点P′,当点P位于P′位置时,OP′取得最小值,
过点M作MQ⊥x轴于点Q,
22
则OQ=3、MQ=4,
∴OM=5,
又∵MP′=2,
∴OP′=3,
∴AB=2OP′=6,
故选:C.
二、填空题(本大题共6小题,满分18分。只要求填写最后结果,每小题填对得3分)
13.
【解答】解:0.000000000000000000000000093=9.3×10﹣26,
故答案为:9.3×10﹣26.
14.
【解答】解:如图,连接OB,OC,
∵∠A=45°,
∴∠BOC=90°,
∴△BOC是等腰直角三角形,
又∵BC=4,
∴BO=CO=BC•cos45°=2,
∴⊙O的直径为4,
故答案为:4.
22
15.
【解答】解:由折叠知,A'E=AE,A'B=AB=6,∠BA'E=90°,
∴∠BA'C=90°,
在Rt△A'CB中,A'C==8,
设AE=x,则A'E=x,
∴DE=10﹣x,CE=A'C+A'E=8+x,
在Rt△CDE中,根据勾股定理得,(10﹣x)2+36=(8+x)2,
∴x=2,
∴AE=2,
在Rt△ABE中,根据勾股定理得,BE==2,
∴sin∠ABE==,
故答案为:.
16.
【解答】解:经过观察每个“田”左上角数字依此是1,3,5,7等奇数,此位置数为15时,恰好是第8个奇数,即此“田”字为第8个.观察每个“田”字左下角数据,可以发现,规律是2,22,23,24等,则第8 数为28.观察左下和右上角,每个“田”字的右上角数字依次比左下角大0,2,4,6等,到第8个图多14.则c=28+14=270
故应填:270或28+14
17.
22
【解答】解:(1)在Rt△CDE中,tanC=,CD=x
∴DE=x,CE=x,
∴BE=10﹣x,
∴S△BED=×(10﹣x)•x=﹣x2+3x.
∵DF=BF,
∴S=S△BED=x2,
故答案为S=x2.
18.
【解答】解:DH=100,DK=100,AH=15,
∵AH∥DK,
∴∠CDK=∠A,
而∠CKD=∠AHD,
∴△CDK∽△DAH,
∴=,即=,
∴CK=.
答:KC的长为步.
故答案为.
三、解答题(本大题共7小题,满分66分。解答应写出必要的文字说明、证明过程或推演步骤)
22
19.
【解答】解:原式=÷(﹣)
=÷
=•
=﹣,
当m=﹣2时,
原式=﹣
=﹣
=﹣1+2.
20.
【解答】解:(1)设乙种图书售价每本x元,则甲种图书售价为每本1.4x元
由题意得:
解得:x=20
经检验,x=20是原方程的解
∴甲种图书售价为每本1.4×20=28元
答:甲种图书售价每本28元,乙种图书售价每本20元
(2)设甲种图书进货a本,总利润元,则
=(28﹣20﹣3)a+(20﹣14﹣2)(1200﹣a)=a+4800
∵20a+14×(1200﹣a)≤20000
解得a≤
∵w随a的增大而增大
∴当a最大时w最大
∴当a=533本时,w最大
此时,乙种图书进货本数为1200﹣533=667(本)
22
答:甲种图书进货533本,乙种图书进货667本时利润最大.
21.
【解答】解:(1)∵所抽取学生的总数为8÷20%=40人,
∴该班级等级为A的学生人数为40﹣(25+8+2)=5人,
则估计本校初三年级等级为A的学生人数为1000×=125人;
(2)设两位满分的男生记为A1、A2、三位满分的女生记为B1、B2、B3,
从这5名同学中选3人的所有等可能结果为:
(B1,B2,B3)、(A2,B2,B3)、(A2,B1,B3)、(A2,B1,B2)、(A1,B2,B3)、
(A1,B1,B3)、(A1,B1,B2)、(A1,A2,B3)、(A1,A2,B2)、(A1,A2,B1),
其中恰好有2名女生、1名男生的结果有6种,
所以恰好抽到2名女生和1名男生的概率为=.
22.
【解答】解:(1)点B坐标为(﹣6,0),AD=3,AB=8,E为CD的中点,
∴点A(﹣6,8),E(﹣3,4),
函数图象经过E点,
∴m=﹣3×4=﹣12,
设AE的解析式为y=kx+b,
,
解得,
一次函数的解析是为y=﹣x;
(2)AD=3,DE=4,
∴AE==5,
22
∵AF﹣AE=2,
∴AF=7,
BF=1,
设E点坐标为(a,4),则F点坐标为(a﹣3,1),
∵E,F两点在函数y=图象上,
∴4a=a﹣3,解得a=﹣1,
∴E(﹣1,4),
∴m=﹣1×4=﹣4,
∴y=﹣.
23.
【解答】解:(1)∵AF=FG,
∴∠FAG=∠FGA,
∵AG平分∠CAB,
∴∠CAG=∠FGA,
∴∠CAG=∠FGA,
∴AC∥FG,
∵DE⊥AC,
∴FG⊥DE,
∵FG⊥BC,
∴DE∥BC,
∴AC⊥BC,
∴∠C=∠DHG=90°,∠CGE=∠GED,
∵F是AD的中点,FG∥AE,
∴H是ED的中点,
∴FG是线段ED的垂直平分线,
∴GE=GD,∠GDE=∠GED,
22
∴∠CGE=∠GDE,
∴△ECG≌△GHD;
(2)证明:过点G作GP⊥AB于P,
∴GC=GP,而AG=AG,
∴△CAG≌△PAG,
∴AC=AP,
由(1)可得EG=DG,
∴Rt△ECG≌Rt△GPD,
∴EC=PD,
∴AD=AP+PD=AC+EC;
(3)四边形AEGF是菱形,
证明:∵∠B=30°,
∴∠ADE=30°,
∴AE=AD,
∴AE=AF=FG,
由(1)得AE∥FG,
∴四边形AECF是平行四边形,
∴四边形AEGF是菱形.
24.
【解答】解:(1)∵二次函数y=ax2+bx+c经过点A(﹣4,0)、B(2,0),C(0,6),
∴,
22
解得,,
所以二次函数的解析式为:y=,
(2)由A(﹣4,0),E(0,﹣2),可求AE所在直线解析式为y=,
过点D作DN⊥x轴,交AE于点F,交x轴于点G,过点E作EH⊥DF,垂足为H,如图
设D(m,),则点F(m,),
∴DF=﹣()=,
∴S△ADE=S△ADF+S△EDF=×DF×AG+DF×EH
=×DF×AG+×DF×EH
=×4×DF
=2×()
=,
∴当m=时,△ADE的面积取得最大值为.
(3)y=的对称轴为x=﹣1,
设P(﹣1,n),又E(0,﹣2),A(﹣4,0),
可求PA=,PE=,AE=,
22
当PA=PE时,=,
解得,n=1,此时P(﹣1,1);
当PA=AE时,=,
解得,n=,此时点P坐标为(﹣1,);
当PE=AE时,=,
解得,n=﹣2,此时点P坐标为:(﹣1,﹣2).
综上所述,
P点的坐标为:(﹣1,1),(﹣1,),(﹣1,﹣2).
25.
【解答】解:(1)∠DEF=∠AEF,
理由:∵EF∥AB,
∴∠DEF=∠EBA,∠AEF=∠EAB,
∵∠EAB=∠EBA,
∴∠DEF=∠AEF;
(2)△EOA∽△AGB,
理由:∵四边形ABCD是菱形,
∴AB=AD,AC⊥BD,
∴∠GAB=∠ABE+∠ADB=2∠ABE,
∵∠AEO=∠ABE+∠BAE=2∠ABE,
∵∠GAB=∠AEO,∠GAB=∠AOE=90°,
∴△EOA∽△AGB;
(3)如图,连接DM,∵四边形ABCD是菱形,
由对称性可知,BM=DM,∠ADM=∠ABM,
∵AB∥CH,
22
∴∠ABM=∠H,
∴∠ADM=∠H,
∵∠DMH=∠FMD,
∴△MFD∽△MDH,
∴,
∴DM2=MF•MH,
∴BM2=MF•MH.
22
相关文档
- 2018年广西省六市同城中考数学试卷2021-11-068页
- 2018年山东省青岛市中考数学试卷含2021-11-0622页
- 2019年江苏省泰州市中考数学试卷含2021-11-0624页
- 2019年浙江省丽水市中考数学试卷含2021-11-0630页
- 2018年江苏省连云港中考数学试卷含2021-11-0623页
- 2018年湖北省荆门市中考数学试卷含2021-11-0616页
- 黑龙江省龙东地区中考数学试卷含答2021-11-0636页
- 2018年山东省滨州市中考数学试卷含2021-11-0619页
- 2019年天津市中考数学试卷含答案2021-11-0627页
- 2019年山东省临沂市中考数学试卷含2021-11-0629页