- 71.00 KB
- 2021-11-10 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
第2课时 二次函数与几何综合运用
能根据具体几何问题中的数量关系,列出二次函数关系式,并能应用二次函数的相关性质解决实际几何问题,体会二次函数是刻画现实世界的有效数学模型.
重点
应用二次函数解决几何图形中有关的最值问题.
难点
函数特征与几何特征的相互转化以及讨论最值在何处取得.
一、引入新课
上节课我们一起研究用二次函数解决利润等代数问题,这节课我们共同研究二次函数与几何的综合应用.
二、教学过程
问题1:教材第49页探究1.
用总长为60 m的篱笆围成矩形场地,矩形面积S随矩形一边长l的变化而变化.当l为多少米时,场地的面积S最大?
分析:
提问1:矩形面积公式是什么?
提问2:如何用l表示另一边?
提问3:面积S的函数关系式是什么?
问题2:如图,用一段长为60 m的篱笆围成一个一边靠墙的矩形菜园,墙长32 m,这个矩形的长、宽各为多少时,菜园的面积最大,最大面积是多少?
分析:
提问1:问题2与问题1有什么不同?
提问2:我们可以设面积为S,如何设自变量?
提问3:面积S的函数关系式是什么?
答案:设垂直于墙的边长为x米,S=x(60-2x)=-2x2+60x.
提问4:如何求解自变量x的取值范围?墙长32 m对此题有什么作用?
答案:0<60-2x≤32,即14≤x<30.
提问5:如何求最值?
答案:x=-=-=15时,Smax=450.
问题3:将问题2中“墙长为32 m”改为“墙长为18 m”,求这个矩形的长、宽各为多少时,菜园的面积最大,最大面积是多少?
提问1:问题3与问题2有什么异同?
提问2:可否模仿问题2设未知数、列函数关系式?
提问3:可否试设与墙平行的一边为x米?则如何表示另一边?
2
答案:设矩形面积为S m2,与墙平行的一边为x米,则S=·x=-+30x.
提问4:当x=30时,S取最大值.此结论是否正确?
提问5:如何求自变量的取值范围?
答案:0<x≤18.
提问6:如何求最值?
答案:由于30>18,因此只能利用函数的增减性求其最值.当x=18时,Smax=378.
小结:在实际问题中求解二次函数最值问题,不一定都取图象顶点处,要根据自变量的取值范围来确定.通过问题2与问题3的对比,希望学生能够理解函数图象的顶点、端点与最值的关系,以及何时取顶点处、何时取端点处才有符合实际的最值.
三、回归教材
阅读教材第51页的探究3,讨论有没有其他“建系”的方法?哪种“建系”更有利于题目的解答?
四、基础练习
1.教材第51页的探究3,教材第57页第7题.
2.阅读教材第52~54页.
五、课堂小结与作业布置
课堂小结
1.利用求二次函数的最值问题可以解决实际几何问题.
2.实际问题的最值求解与函数图象的顶点、端点都有关系,特别要注意最值的取得不一定在函数的顶点处.
作业布置
教材第52页 习题第4~7题,第9题.
2
相关文档
- 冀教九下认识二次函数说课2021-11-104页
- 二次函数导学案(10)实际问题与二次2021-11-102页
- 中考数学三轮真题集训冲刺知识点202021-11-1055页
- 决胜2020中考数学压轴题全揭秘下专2021-11-10105页
- 沪教版(上海)初中数学九年级第一学期2021-11-103页
- 寒假课程 【精品讲义】人教版 九年2021-11-1017页
- 九年级数学下册第二章二次函数4二2021-11-1027页
- 九年级下册数学同步练习1-5 第1课2021-11-103页
- 2020-2021学年初三数学上册同步练2021-11-109页
- 九年级数学下册第二章二次函数1二2021-11-1030页