- 349.50 KB
- 2021-11-11 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
锐角三角函数
类型1. 锐角三角函数的运算
例1.在△ABC中,∠C=90°,如果tanA= ,那么sinB的值等于( )
A. B. C. D.
例2. 计算的值是 .
巩固练习:
1. 计算:2sin60°= .
2. 化简=( )
A B. C. D.
3.计算:(1) (2)
类型2. 锐角三角函数的应用
例1. 如图1,王英同学从A地沿北偏西60º方向走100m到B地,再从B地向正南方向走200m到C地,此时王英同学离A地 ( )
A. m B. 100 m C. 150m D. m
例2. 如图2,在高楼前点测得楼顶的仰角为,向高楼前进60米到点,又测得仰角为,则该高楼的高度大约为( )
图3
图2
图1
A. 82米 B. 163米 C. 52米 D. 70米
例3. 一艘轮船自西向东航行,在A处测得东偏北21.3°方向有一座小岛C,继续向东航行60海里到达B处,测得小岛C此时在轮船的东偏北63.5°方向上.之后,轮船继续向东航行多少海里,距离小岛C最近?(参考数据:sin21.3°≈,tan21.3°≈, sin63.5°≈,tan63.5°≈2)
例4. 九年级(1)班课外活动小组利用标杆测量学校旗杆的高度,已知标杆高度,标杆与旗杆的水平距离,人的眼睛与地面的高度,人与标杆的水平距离,求旗杆的高度.
例5. 某学校体育场看台的侧面如图阴影部分所示,看台有四级高度相等的小台阶.已知看台高为
l.6米,现要做一个不锈钢的扶手AB及两根与FG垂直且长为l米的不锈钢架杆AD和BC(杆子
的底端分别为D,C),且∠DAB=66. 5°.
(1)求点D与点C的高度差DH;
(2)求所用不锈钢材料的总长度(即AD+AB+BC,结果精确到0.1米).(参考数据:sin66.5°≈0.92,cos66.5°≈0.40,tan66.5°≈2.30)
例6. 如图,一条小船从港口出发,沿北偏东方向航行海里后到达处,然后又沿北偏西方向航行海里后到达处.问此时小船距港口多少海里?(结果精确到1海里)
(以下数据可以选用:,,,)
巩固练习:
1. 王英同学从A地沿北偏西60º方向走100m到B地,再从B地向正南方向走200m到C地,此时王英同学离A地 ( )
A. 150m B. m C. 100 m D. m
2. 如图3,一艘轮船由海平面上A地出发向南偏西40º的方向行驶40海里到达B地,再由B地向北偏西10º的方向行驶40海里到达C地,则A、C两地相距( )
A. 30海里 B. 40海里 C. 50海里 D. 60海里
3. 一次数学活动中,小迪利用自己制作的测角器测量小山的高度.已知她的眼睛与地面的距离为1.6米,小迪在处测量时,测角器中的(量角器零度线和铅垂线的夹角,如图);然后她向小山走50米到达点处(点在同一直线上),这时测角器中的,那么小山的高度约为( )
A.68米 B.70米 C.121米 D.123米
图3
4. 如图,在某建筑物AC上,挂着“多彩云南”的宣传条幅BC,小明站在点F处,看条幅顶端B,测的仰角为,再往条幅方向前行20米到达点E处,看到条幅顶端B,测的仰角为,求宣传条幅BC的长,(小明的身高不计,结果精确到0.1米)
63°
2m
A
E
C
B
D
5. 如图,一辆吊车的吊臂以63°的倾角倾斜于水平面,如果这辆吊车支点A距地面的高度AB为
2m,且点A到铅垂线ED的距离为AC=15m,求吊臂的最高点E到地面的高度ED的长(精确到0.1 m)。
6.如图,一枚运载火箭从地面处发射,当火箭到达点时,从地面处的雷达站测得的距离是,仰角是.后,火箭到达点,此时测得的距离是,仰角为,解答下列问题:
(1)火箭到达点时距离发射点有多远(精确到0.01km)?
(2)火箭从点到点的平均速度是多少(精确到0.1km/s)?
7. 经过江汉平原的沪蓉(上海—成都)高速铁路即将动工.工程需要测量汉江某一段的宽度.如图①,一测量员在江岸边的A处测得对岸岸边的一根标杆B在它的正北方向,测量员从A点开始沿岸边向正东方向前进100米到达点C处,测得.
(1)求所测之处江的宽度();
(2)除(1)的测量方案外,请你再设计一种测量江宽的方案,并在图②中画出图形.
A
C
B
图①
图②
类型3. 综合问题
例1.已知:在△ABC中 ,AD为∠BAC的平分线,以C为圆心,CD为半径的半圆交
BC的延长线于点E,交AD于点F,交AE于点M,且∠B=∠CAE,FE:FD=4:3.
⑴ 求证:AF=DF;
⑵ 求∠AED的余弦值;
⑶ 如果BD=10,求△ABC的面积.
例2.已知:如图,△ABC内接于⊙O,点D在OC的延长线上,sinB=,∠CAD=30°.
(1)求证:AD是⊙O的切线;(2)若OD⊥AB,BC=5,求AD的长.
例3. 如图,已知⊙O的直径AB垂直于弦CD于E,连结AD、BD、OC、OD,且OD=5。
(1)若,求CD的长;
(2)若 ∠ADO:∠EDO=4:1,求扇形OAC(阴影部分)的面积(结果保留)。
巩固练习:
1. 在图1和图2中,已知OA=OB,AB=24,⊙O的直径为10.
(1)如图1,AB与⊙O相切于点C,试求OA的值;
(2)如图2,若AB与⊙O相交于D、E两点,且D、E均为AB的三等分点,试求tanA的值.
2.已知在Rt△ABC中,∠C=90°,AD是∠BAC的角平分线,以AB上一点O为圆心,AD为弦
作⊙O.
(1)在图中作出⊙O;(不写作法,保留作图痕迹)
(2)求证:BC为⊙O的切线;
(3)若AC=3,tanB=,求⊙O的半径长.
3. 已知:如图:BC是半圆O的直径,D、E是半圆O上两点,,CE的延长线与BD的延长线交于点A,过点E作EF⊥BC于点F,交CD与点G。
(1)求证:AE=DE
(2)若,,求DG;
4. 已知:如图,△ABC内接于⊙O,AD是⊙O的直径,点E、F分别在AB、AC的延长线上,EF交⊙O于点M、N,交AD于点H,H是OD的中点,D是弧MN的中点,EH-HF=2,设∠ACB=a,tana=,EH和HF是方程x2-(k+2)x+4k=0的两个实数根。
(1)求EH和HF的长;
(2)求BC的长。
相关文档
- 中考数学专题复习练习:二次函数图像2021-11-116页
- 中考数学专题复习练习:《有理数》本2021-11-1110页
- 中考数学专题复习练习:2006年中考复2021-11-117页
- 中考数学专题复习练习:函数的图像2021-11-1112页
- 中考数学专题复习练习:三角形资料2021-11-114页
- 中考数学专题复习练习:平方根2021-11-1119页
- 中考数学专题复习练习:二次函数与圆2021-11-115页
- 中考数学专题复习练习:相似三角形的2021-11-1119页
- 中考数学专题复习练习:用函数的观点2021-11-113页
- 中考数学专题复习练习:平面直角坐标2021-11-119页