- 92.00 KB
- 2021-11-12 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
图形面积的最值问题面面观
例1某建筑物的窗户如图所示,它的上半部分是半圆,下半部分是矩形,制造窗框的材料总长(如图1中所有黑线的长度和)为10米.当x等于多少米时,窗户的透光面积最大,最大面积是多少?
图1
解析:设窗户上半部半圆的半径为x米,下半部矩形的宽为y米,则有4y+6x+πx=10,所以y=.
设窗户面积为S米2,由题意,得S=πx2+2x·=-3x2+5x=-3(x-)2+.
即当x=米时,S的最大值为米2.
所以当x等于米时,窗户的透光面积最大,最大面积是米2.
例2 如图2,小颖的爸爸准备用长为l2 m的篱笆,一边利用足够长的墙围出一块苗圃.要求围出的苗圃是五边形ABCDE,AE⊥AB,BC⊥AB,∠C=∠D=∠E.如果设CD=DE=xm,五边形ABCDE的面积为Sm2.请你帮他算一算:当x取什么值时,S最大?并求出S的最大值.
图2
解析:连接EC,作DF⊥EC,垂足为F.
因为∠DCB=∠CDE=∠DEA,∠EAB=∠CBA=90°,所以∠DCB=∠CDE=∠DEA=120°.
因为DE=CD,所以∠DEC=∠DCE=30°,所以∠CEA=∠ECB=90°.
所以四边形EABC为矩形,所以AE=6-x,DF=x,EC=.
所以S==.
故当时,m2.即当x为4m时,苗圃的面积最大为12m2.
温馨提示:解决有关图形面积最值问题的一般步骤:
(1)仔细审题,分析问题中的变量和常量以及它们之间的关系;
(2)建立二次函数模型表示它们之间的关系;
(3)把二次函数解析式用配方法化为顶点式或用公式法求出顶点坐标,确定出二次函数的最值;
(4)注意检验结果的合理性.
1
相关文档
- 初中物理中考复习单元复习课件:第五2021-11-1232页
- 2020届初中生物中考一轮复习考点测2021-11-126页
- 初中物理复习,运动和力单元复习-常2021-11-1215页
- 初中数学中考复习课件章节考点专题2021-11-1240页
- 初中数学中考总复习课件PPT:7分式方2021-11-1211页
- 2018届初中地理总复习课件:第14讲 2021-11-1256页
- 初中语文PPT教学课件:15 短文两篇(人2021-11-1236页
- 初中语文文言文必背篇目:陋室铭2021-11-122页
- 2020年安徽省初中毕业学业考试数学2021-11-127页
- 初中物理中考复习单元复习课件:第十2021-11-1228页