- 2.27 MB
- 2021-05-14 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
(2018)
18.(12分)
如图,四边形为正方形,分别为的中点,以为折痕把折起,使点到达点的位置,且.
(1)证明:平面平面;
(2)求与平面所成角的正弦值.
(2017)
18.(12分)
如图,在四棱锥中,中,且.
(1)证明:平面平面;
(2)若,,求二面角的余弦值.
(2016)
(18)(本小题满分为12分)如图,在以A,B,C,D,E,F为顶点的五面体中,面ABEF为正方形,AF=2FD, ,且二面角D-AF-E与二面角C-BE-F都是.
(I)证明:平面ABEF平面EFDC;
(II)求二面角E-BC-A的余弦值.
(2015)
18.如图,四边形ABCD为菱形,∠ABC=120°,E,F是平面ABCD同一侧的两点,BE⊥平面ABCD,DF⊥平面ABCD,BE=2DF,AE⊥EC.
(Ⅰ)证明:平面AEC⊥平面AFC;
(Ⅱ)求直线AE与直线CF所成角的余弦值.
(2014)
19. (本小题满分12分)如图三棱锥中,
侧面为菱形,.
(I)证明:;
(Ⅱ)若,,AB=BC,求二面角的余弦值.
(2013)
18.(2013课标全国Ⅰ,理18)(本小题满分12分)如图,三棱柱ABC-A1B1C1中,CA=CB,AB=AA1,∠BAA1=60°.
(1)证明:AB⊥A1C;
(2)若平面ABC⊥平面AA1B1B,AB=CB,求直线A1C与平面BB1C1C所成角的正弦值.
(2012)
(19)(本小题满分12分)
如图,直三棱柱中,,是棱的中点,。
(1) 证明:;
(2) 求二面角 的大小.
(2011)
18. (本小题满分12分)
如图,四棱锥中,底面为平行四边形,
∠,,⊥底面.
(I) 证明:⊥;
(II) (II)若,求二面角的余弦值.
答案
(2018)
18.(12分)
解:(1)由已知可得,BF⊥PF,BF⊥EF,所以BF⊥平面PEF.
又平面ABFD,所以平面PEF⊥平面ABFD.
(2)作PH⊥EF,垂足为H.由(1)得,PH⊥平面ABFD.
以H为坐标原点,的方向为y轴正方向,为单位长,建立如图所示的空间直角坐标系H−xyz.
由(1)可得,DE⊥PE.又DP=2,DE=1,所以PE=.又PF=1,EF=2,故PE⊥PF.
可得.
则为平面ABFD的法向量.
设DP与平面ABFD所成角为,则.
所以DP与平面ABFD所成角的正弦值为.
(2017)
(1)证明:∵
∴,
又∵,∴
又∵,、平面
∴平面,又平面
∴平面平面
(2)取中点,中点,连接,
∵
∴四边形为平行四边形
∴
由(1)知,平面
∴平面,又、平面
∴,
又∵,∴
∴、、两两垂直
∴以为坐标原点,建立如图所示的空间直角坐标系
设,∴、、、,
∴、、
设为平面的法向量
由,得
令,则,,可得平面的一个法向量
∵,∴
又知平面,平面
∴,又
∴平面
即是平面的一个法向量,
∴
由图知二面角为钝角,所以它的余弦值为
(2016)
(I)由已知可得,,所以平面.
又平面,故平面平面.
(II)过作,垂足为,由(I)知平面.
以为坐标原点,的方向为轴正方向,为单位长度,建立如图所示的空间直角坐标系.
由(I)知为二面角的平面角,故,则,,可得,,,.
由已知,,所以平面.
又平面平面,故,.
由,可得平面,所以为二面角的平面角,
.从而可得.
所以,,,.
设是平面的法向量,则
,即,
所以可取.
设是平面的法向量,则,
同理可取.则.
故二面角的余弦值为.
(2015)
(Ⅰ)连接BD,设BD∩AC=G,连接EG,FG,EF,在菱形ABCD中,不妨设GB=1,由∠ABC=120°,可得AG=GC=.
由BE⊥平面ABCD,AB=BC可知,AE=EC,
又∵AE⊥EC,∴EG=,EG⊥AC,
在Rt△EBG中,可得BE=,故DF=.
在Rt△FDG中,可得FG=.
在直角梯形BDFE中,由BD=2,BE=,DF=可得EF=,
∴,∴EG⊥FG,
∵AC∩FG=G,∴EG⊥平面AFC,
∵EG面AEC,∴平面AFC⊥平面AEC.
(Ⅱ)如图,以G为坐标原点,分别以的方向为轴,y轴正方向,为单位长度,建立空间直角坐标系G-xyz,由(Ⅰ)可得A(0,-,0),E(1,0, ),F(-1,0,),C(0,,0),∴=(1,,),=(-1,-,).…10分
故.
所以直线AE与CF所成的角的余弦值为.
(2014)
(Ⅰ)连结,交于O,连结AO.因为侧面为菱形,所以,且
O为与的中点.又,所以平面,故又 ,故 ………6分
(Ⅱ)因为且O为的中点,所以AO=CO又因为AB=BC,所以
故OA⊥OB,从而OA,OB,两两互相垂直.
以O为坐标原点,OB的方向为x轴正方向,OB为单位长,建立如图所示空间直角坐标系O-. 因为,所以为等边三角形.又AB=BC,则
,,,
,
设是平面的法向量,则
,即 所以可取
设是平面的法向量,则,同理可取
则,所以二面角的余弦值为.
(2013)
(1)证明:取AB的中点O,连结OC,OA1,A1B.
因为CA=CB,所以OC⊥AB.
由于AB=AA1,∠BAA1=60°,
故△AA1B为等边三角形,
所以OA1⊥AB.
因为OC∩OA1=O,所以AB⊥平面OA1C.
又A1C平面OA1C,故AB⊥A1C.
(2)解:由(1)知OC⊥AB,OA1⊥AB.
又平面ABC⊥平面AA1B1B,交线为AB,
所以OC⊥平面AA1B1B,
故OA,OA1,OC两两相互垂直.
以O为坐标原点,的方向为x轴的正方向,||为单位长,建立如图所示的空间直角坐标系O-xyz.
由题设知A(1,0,0),A1(0,,0),C(0,0,),B(-1,0,0).
则=(1,0,),==(-1,,0),=(0,,).
设n=(x,y,z)是平面BB1C1C的法向量,
则即可取n=(,1,-1).
故cos〈n,〉==.
所以A1C与平面BB1C1C所成角的正弦值为.
(2012)
(1)在中,
得:
同理:
得:面
(2)面
取的中点,过点作于点,连接
,面面面
得:点与点重合
且是二面角的平面角
设,则,
既二面角的大小为
(18)解:(I)因为,,由余弦定理得.
从而,故.
又底面,可得.
所以平面. 故.
(II)如图,以为坐标原点,的长为单位长,射线为轴的正半轴建立空间直角坐标系,则
,,,
,,
设平面的法向量为,则
即.
因此可取.
设平面的法向量为,则,可取.
.
故二面角的余弦值为.