- 86.00 KB
- 2021-06-10 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
1.(2013·湖北高考改编)在直角坐标系xOy中,椭圆C的参数方程为(φ为参数,a>b>0).在极坐标系(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,直线l与圆O的极坐标方程分别为ρsin=m(m为非零常数)与ρ=b.若直线l经过椭圆C的焦点,且与圆 O相切,求椭圆C的离心率.
解:由题意知,椭圆C的普通方程为+=1(a>b>0),直线l的直角坐标方程为x+y=m,圆O的直角坐标方程为x2+y2=b2,设椭圆C的半焦距为c,则根据题意可知,|m|=c,=b,所以有c=b,所以椭圆C的离心率e===.
2.(2013·重庆高考改编)在直角坐标系xOy中,以原点O为极点,x轴的正半轴为极轴建立极坐标系.若极坐标方程为ρcos θ=4的直线与曲线(t为参数)相交于A,B两点,求AB的长.
解:ρcos θ=4化为直角坐标方程为x=4, ①
化为普通方程为y2=x3(x≥0), ②
联立①②得A(4,8),B(4,-8),故|AB|=16.
3.极坐标系中,A为曲线ρ2+2ρcos θ-3=0上的动点,B为直线ρcos θ+ρsin θ-7=0上的动点,求AB的最小值.
解:将互化公式分别代入曲线和直线的极坐标方程,可得圆方程为(x+1)2+y2=4,圆心(-1,0),半径为2,直线方程为x+y-7=0,
圆心到直线的距离d==4.
所以|AB|的最小值为4-2.
4.(2013·新课标全国卷Ⅱ)已知动点P,Q在曲线C:(t为参数)上,对应参数分别为t=α与t=2α(0<α<2π),M为PQ的中点.
(1)求M的轨迹的参数方程;
(2)将M到坐标原点的距离d表示为α的函数,并判断M的轨迹是否过坐标原点.
解:(1)依题意有P(2cos α,2sin α),Q(2cos 2α,2sin 2α), 因此M(cos α+cos 2α,sin α+sin 2α).
M的轨迹的参数方程为(α为参数,0<α<2π).
(2)M点到坐标原点的距离
d==(0<α<2π).
当α=π时,d=0,故M的轨迹过坐标原点.
5.(2012·江苏高考)在极坐标系中,已知圆C经过点P,圆心为直线ρsin=-与极轴的交点,求圆C的极坐标方程.
解:在ρsin=-中令θ=0,
得ρ=1,
所以圆C的圆心坐标为(1,0).
因为圆C经过点P,
所以圆C的半径PC= =1,于是圆C过极点,所以圆C的极坐标方程为ρ=2cos θ.
6.在直角坐标系xOy中,直线l的参数方程为(t为参数).在极坐标系(与直角坐标系xOy取相同的单位长度,且以原点O为极点,以x轴正半轴为极轴)中,圆C的方程为ρ=4cos θ.
(1)求圆C在直角坐标系中的方程;
(2)若圆C与直线l相切,求实数a的值.
解:(1)由ρ=4cos θ得ρ2=4ρcos θ,
化为直角坐标方程得x2+y2=4x,
即圆C的直角坐标方程为(x-2)2+y2=4.
(2)将直线l的参数方程(t为参数)化为普通方程得x-y-a=0.
由圆C与直线l相切,得=2,
解得a=-2或6.