- 304.00 KB
- 2021-06-11 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
课 题:2.2 函数的表示方法2—函数的值域
教学目的:
1.掌握求函数值域的基本方法(直接法、换元法、判别式法);掌握二次函数值域(最值)或二次函数在某一给定区间上的值域(最值)的求法.
2.培养观察分析、抽象概括能力和归纳总结能力;
教学重点:值域的求法
教学难点:二次函数在某一给定区间上的值域(最值)的求法
授课类型:新授课
课时安排:1课时
教 具:多媒体、实物投影仪
教学过程:
一、复习引入:
函数的三要素是:定义域、值域和定义域到值域的对应法则;对应法则是函数的核心(它规定了x和y之间的某种关系),定义域是函数的重要组成部分(对应法则相同而定义域不同的映射就是两个不同的函数);定义域和对应法则一经确定,值域就随之确定
函数的表示方法⑴解析法优点:一是简明、全面地概括了变量间的关系;二是可以通过解析式求出任意一个自变量的值所对应的函数值.中学阶段研究的函数主要是用解析法表示的函数.
⑵列表法优点:不需要计算就可以直接看出与自变量的值相对应的函数值.
⑶图象法:优点:能直观形象地表示出自变量的变化,相应的函数值变化的趋势,这样使得我们可以通过图象来研究函数的某些性质.
前面我们已经学习了函数定义域的求法和函数的表示法,今天我们来学习求函数值域的几种常见方法
二、讲解新课:
1.直接法:利用常见函数的值域来求
一次函数y=ax+b(a0)的定义域为R,值域为R;
反比例函数的定义域为{x|x0},值域为{y|y0};
二次函数的定义域为R,
当a>0时,值域为{};当a<0时,值域为
{}.
例1.求下列函数的值域
① y=3x+2(-1x1) ②
③ ④
解:①∵-1x1,∴-33x3,
∴-13x+25,即-1y5,∴值域是[-1,5]
②∵ ∴
即函数的值域是 { y| y2}
③
∵ ∴
即函数的值域是 { y| yÎR且y¹1}(此法亦称分离常数法)
④当x>0,∴=,
当x<0时,=-
∴值域是[2,+).(此法也称为配方法)
函数的图像为:
2.二次函数比区间上的值域(最值):
例2 求下列函数的最大值、最小值与值域:
①;
②;
③; ④;
解:∵,∴顶点为(2,-3),顶点横坐标为2.
①∵抛物线的开口向上,函数的定义域R,
∴x=2时,ymin=-3 ,无最大值;函数的值域是{y|y-3 }.
②∵顶点横坐标2[3,4],
当x=3时,y= -2;x=4时,y=1;
∴在[3,4]上,=-2,=1;值域为[-2,1].
③∵顶点横坐标2[0,1],当x=0时,y=1;x=1时,y=-2,
∴在[0,1]上,=-2,=1;值域为[-2,1].
④∵顶点横坐标2 [0,5],当x=0时,y=1;x=2时,y=-3, x=5时,y=6,
∴在[0,1]上,=-3,=6;值域为[-3,6].
注:对于二次函数,
⑴若定义域为R时,
①当a>0时,则当时,其最小值;
②当a<0时,则当时,其最大值.
⑵若定义域为x [a,b],则应首先判定其顶点横坐标x0是否属于区间[a,b].
①若[a,b],则是函数的最小值(a>0)时或最大值(a<0)
时,再比较的大小决定函数的最大(小)值.
②若[a,b],则[a,b]是在的单调区间内,只需比较的大小即可决定函数的最大(小)值.
注:①若给定区间不是闭区间,则可能得不到最大(小)值;
②当顶点横坐标是字母时,则应根据其对应区间特别是区间两端点的位置关系进行讨论.
3.判别式法(△法):
判别式法一般用于分式函数,其分子或分母只能为二次式,解题中要注意二次项系数是否为0的讨论
例3.求函数的值域
方法一:去分母得 (y-1)+(y+5)x-6y-6=0 ①
当 y¹1时 ∵xÎR ∴△=(y+5)+4(y-1)×6(y+1)0
由此得 (5y+1)0
检验 时 (代入①求根)
∵2 Ï 定义域 { x| x¹2且 x¹3} ∴
再检验 y=1 代入①求得 x=2 ∴y¹1
综上所述,函数的值域为 { y| y¹1且 y¹}
方法二:把已知函数化为函数 (x¹2)
由此可得 y¹1
∵ x=2时 即
∴函数的值域为 { y| y¹1且 y¹}
说明:此法是利用方程思想来处理函数问题,一般称判别式法. 判别式法一般用于分式函数,其分子或分母只能为二次式.解题中要注意二次项系数是否为0的讨论.
4.换元法
例4.求函数的值域
解:设 则 t0 x=1-
代入得
∵t0 ∴y4
5.分段函数
例5.求函数y=|x+1|+|x-2|的值域.
解法1:将函数化为分段函数形式:,画出它的图象(下图),由图象可知,函数的值域是{y|y3}.
解法2:∵函数y=|x+1|+|x-2|表示数轴上的动点x到两定点-1,2的距离之和,∴易见y的最小值是3,∴函数的值域是[3,+]. 如图
两法均采用“数形结合”,利用几何性质求解,称为几何法或图象法.
说明:以上是求函数值域常用的一些方法(观察法、配方法、判别式法、图象法、换元法等),随着知识的不断学习和经验的不断积累,还有如不等式法、三角代换法等.
有的题可以用多种方法求解,有的题用某种方法求解比较简捷,同学们要通过不断实践,熟悉和掌握各种解法,并在解题中尽量采用简捷解法.
三、练习:
1 ;
解:∵x0,,∴y11.
另外,此题利用基本不等式解更简捷:
2
∵2-4x+3>0恒成立(为什么?),
∴函数的定义域为R,
∴原函数可化为2y-4yx+3y-5=0,由判别式0,
即16-4×2y(3y-5)=-8+40y0(y0),
解得0y5,又∵y0, ∴0
相关文档
- 高中数学必修1教案1_3_2函数的奇偶2021-06-117页
- 高中数学必修1教案:第一章(第9课时)2021-06-115页
- 高中数学必修1教案:第四章(第13课时)2021-06-114页
- 高中数学必修1教案:第一章(第4课时)2021-06-114页
- 高中数学必修1教案第一章 1_2_2 第2021-06-119页
- 高中数学必修1教案:第五章(第4课时)实2021-06-117页
- 高中数学必修1教案:第五章(第1课时)向2021-06-116页
- 高中数学必修1教案第二章 2_1_2 第2021-06-119页
- 高中数学必修1教案第二章 2_2_2 第2021-06-1110页
- 高中数学必修1教案:第九章直线平面2021-06-115页