- 220.87 KB
- 2021-06-11 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
第2课时 对数函数及其性质的应用
[学习目标] 1.进一步加深理解对数函数的概念.2.掌握对数函数的性质及其应用.
[知识链接]
对数函数的图象和性质
a>1
0<a<1
图象
性质
定义域
(0,+∞)
值域
R
过定点
(1,0),即当x=1时,y=0
单调性
在(0,+∞)上是增函数
在(0,+∞)上是减函数
奇偶性
非奇非偶函数
要点一 对数值的大小比较
例1 比较下列各组中两个值的大小:
(1)ln 0.3,ln 2;
(2)loga3.1,loga5.2(a>0,且a≠1);
(3)log30.2,log40.2;
(4)log3π,logπ3.
解 (1)因为函数y=ln x是增函数,且0.3<2,
所以ln 0.3<ln 2.
(2)当a>1时,函数y=logax在(0,+∞)上是增函数,又3.1<5.2,所以loga3.1<loga5.2;
当0<a<1时,函数y=logax在(0,+∞)上是减函数,又3.1<5.2,所以loga3.1>loga5.2.
(3)方法一 因为0>log0.23>log0.24,所以<,即log30.2<log40.2.
方法二 如图所示,
由图可知log40.2>log30.2.
(4)因为函数y=log3x是增函数,且π>3,所以log3π>log33=1.
同理,1=logππ>logπ3,所以log3π>logπ3.
规律方法 比较对数式的大小,主要依据对数函数的单调性.
1.若底数为同一常数,则可由对数函数的单调性直接进行比较.
2.若底数为同一字母,则根据底数对对数函数单调性的影响,对底数进行分类讨论.
3.若底数不同,真数相同,则可以先用换底公式化为同底后,再进行比较,也可以利用顺时针方向底数增大的规律画出函数的图象,再进行比较.
4.若底数与真数都不同,则常借助1,0等中间量进行比较.
跟踪演练1 (1)设a=log32,b=log52,c=log23,则( )
A.a>c>b B.b>c>a
C.c>b>a D.c>a>b
(2)已知a=log23.6,b=log43.2,c=log43.6,则( )
A.a>b>c B.a>c>b
C.b>a>c D.c>a>b
答案 (1)D (2)B
解析 (1)a=log32<log33=1;c=log23>log22=1,
由对数函数的性质可知log52<log32,
∴b<a<c,故选D.
(2)a=log23.6=log43.62,函数y=log4x在(0,+∞)上为增函数,3.62>3.6>3.2,所以a>c>b,故选B.
要点二 对数函数单调性的应用
例2 求函数y=log(1-x2)的单调增区间,并求函数的最小值.
解 要使y=log(1-x2)有意义,则1-x2>0,
∴x2<1,则-1<x<1,因此函数的定义域为(-1,1).
令t=1-x2,x∈(-1,1).
当x∈(-1,0]时,x增大,t增大,y=logt减小,
∴x∈(-1,0]时,y=log(1-x2)是减函数;
当x∈[0,1)时,y=log(1-x2)是增函数.
故函数y=log(1-x2)的单调增区间为[0,1),且函数的最小值ymin=log(1-02)=0.
规律方法 1.求形如y=logaf(x)的函数的单调区间,一定树立定义域优先意识,即由f(x)>0,先求定义域.
2.求此类型函数单调区间的两种思路:(1)利用定义求证;(2)借助函数的性质,研究函数t=f(x)和y=logat在定义域上的单调性,从而判定y=logaf(x)的单调性.
跟踪演练2 (1)函数f(x)=|logx|的单调递增区间是( )
A. B.(0,1]
C.(0,+∞) D.[1,+∞)
(2)设函数f(x)=则满足f(x)≤2的x的取值范围是( )
A.[-1,2] B.[0,2]
C.[1,+∞) D.[0,+∞)
答案 (1)D (2)D
解析 (1)f(x)=当x≥1时,t=logx是减函数,f(x)=-logx是增函数.
∴f(x)的单调增区间为[1,+∞).
(2)f(x)≤2⇔或⇔0≤x≤1或x>1,故选D.
要点三 对数函数的综合应用
例3 已知函数f(x)=loga(a>0且a≠1),
(1)求f(x)的定义域;
(2)判断函数的奇偶性和单调性.
解 (1)要使此函数有意义,
则有或
解得x>1或x<-1,
此函数的定义域为(-∞,-1)∪(1,+∞).
(2)f(-x)=loga=loga
=-loga=-f(x).
又由(1)知f(x)的定义域关于原点对称,
∴f(x)为奇函数.
f(x)=loga=loga(1+),
函数u=1+ 在区间(-∞,-1)和区间(1,+∞)上单调递减.
所以当a>1时,f(x)=loga在(-∞,-1),(1,+∞)上递减;
当0<a<1时,f(x)=loga在(-∞,-1),(1,+∞)上递增.
规律方法 1.判断函数的奇偶性,首先应求出定义域,看是否关于原点对称.
2.求函数的单调区间有两种思路:(1)易得到单调区间的,可用定义法来求证;(2)利用复合函数的单调性求得单调区间.
跟踪演练3 已知函数f(x)=loga(a>0,a≠1,m≠1)是奇函数.
(1)求实数m的值;
(2)探究函数f(x)在(1,+∞)上的单调性.
解 (1)由已知条件得f(-x)+f(x)=0对定义域中的x均成立.
∴loga+loga=0,
即·=1,
∴m2x2-1=x2-1对定义域中的x均成立.
∴m2=1,即m=1(舍去)或m=-1.
(2)由(1)得f(x)=loga.
设t===1+,
∴当x1>x2>1时,
t1-t2=-=<0,
∴t1<t2.
当a>1时,logat1<logat2,即f(x1)<f(x2),
∴当a>1时,f(x)在(1,+∞)上是减函数.
同理当0<a<1时,f(x)在(1,+∞)上是增函数.
1.函数y=ln x的单调递增区间是( )
A.[e,+∞) B.(0,+∞)
C.(-∞,+∞) D.[1,+∞)
答案 B
解析 函数y=ln x的定义域为(0,+∞),其在(0,+∞)上是增函数,故该函数的单调递增区间为(0,+∞).
2.设a=log54,b=(log53)2,c=log45,则( )
A.a<c<b B.b<c<a
C.a<b<c D.b<a<c
答案 D
解析 ∵1=log55>log54>log53>log51=0,
∴1>a=log54>log53>b=(log53)2.
又∵c=log45>log44=1.∴c>a>b.
3.函数f(x)=的定义域是( )
A.(1,+∞) B.(2,+∞)
C.(-∞,2) D.(1,2]
答案 D
解析 由题意有解得1<x≤2.
4.函数f(x)=的值域为________.
答案 (-∞,2)
解析 当x≥1时,logx≤log1=0,∴当x≥1时,f(x)≤0.当x<1时,0<2x<21,即0<f(x)<2.因此函数f(x)的值域为(-∞,2).
5.函数f(x)=log5(2x+1)的单调增区间是________.
答案
解析 要使y=log5(2x+1)有意义,则2x+1>0,即x>-,而y=log5u为(0,+∞)上的增函数,当x>-时,u=2x+1也为R上的增函数,故原函数的单调增区间是.
1.比较两个对数值的大小及解对数不等式问题,其依据是对数函数的单调性.
若对数的底数是字母且范围不明确,一般要分a>1和0<a<1两类分别求解.
2.解决与对数函数相关的问题时要树立“定义域优先”的原则,同时注意数形结合思想和分类讨论思想在解决问题中的应用.
一、基础达标
1.若集合A=,则∁RA等于( )
A.(-∞,0]∪
B.
C.(-∞,0]∪
D.
答案 A
解析 logx≥,即logx≥log,∴0<x≤,
即A=,∴∁RA=.故选A.
2.设a=log3π,b=log2,c=log3,则( )
A.a>b>c B.a>c>b
C.b>a>c D.b>c>a
答案 A
解析 a=log3π>1,b=log2=log23∈,c=log3=log32∈,故有a>b>c.
3.函数f(x)=logax(0<a<1)在[a2,a]上的最大值是( )
A.0 B.1 C.2 D.a
答案 C
解析 ∵0<a<1,∴f(x)=logax在[a2,a]上是减函数,
∴f(x)max=f(a2)=logaa2=2.
4.函数f(x)=lg()的奇偶性是( )
A.奇函数 B.偶函数
C.即奇又偶函数 D.非奇非偶函数
答案 A
解析 f(x)定义域为R,
∵f(-x)+f(x)
=lg()+lg()
=lg=lg 1=0,
∴f(x)为奇函数,选A.
5.函数y=log(-x2+4x+12)的单调递减区间是( )
A.(-∞,2) B.(2,+∞)
C.(-2,2) D.(-2,6)
答案 C
解析 y=logu,u=-x2+4x+12.
令u=-x2+4x+12>0,得-2<x<6.
∴x∈(-2,2)时,u=-x2+4x+12为增函数,
∵y=log(-x2+4x+12)为减函数,
∴函数的单调减区间是(-2,2).
6.已知定义域为R的偶函数f(x)在[0,+∞)上是增函数,且f()=0,则不等式f(log4x)<0的解集是________.
答案 {x|<x<2}
解析 由题意可知,f(log4x)<0⇔-<log4x<⇔log44<log4x<log44⇔<x<2.
7.已知f(x)=(logx)2-3logx,x∈[2,4].试求f(x)的最大值与最小值.
解 令t=logx,
则y=t2-3t=(t-)2-,
∵2≤x≤4,∴log4≤logx≤log2,
即-2≤t≤-1.
可知y=(t-)2-在[-2,-1]上单调递减.
∴当t=-2时,y取最大值为10;
当t=-1时,y取最小值为4.
故f(x)的最大值为10,最小值为4.
二、能力提升
8.设a=log36,b=log510,c=log714,则( )
A.c>b>a B.b>c>a
C.a>c>b D.a>b>c
答案 D
解析 a=log36=log33+log32=1+log32,
b=log510=log55+log52=1+log52,
c=log714=log77+log72=1+log72,
∵log32>log52>log72,∴a>b>c,故选D.
9.已知函数f(x)是定义在R上的偶函数,且在区间[0,+∞)上单调递增.若实数a满足f(log2a)+f(loga)≤2f(1),则a的取值范围是( )
A.[1,2] B.
C.[,2] D.(0,2]
答案 C
解析 ∵f(loga)=f(-log2a)=f(log2a),∴原不等式可化为f(log2a)≤f(1).又∵f(x)在区间[0,+∞)上单调递增,∴0≤log2a≤1,即1≤a≤2.∵f(x)是偶函数,∴f(log2a)≤f(-1).又f(x)在区间(-∞,0]上单调递减,∴-1≤log2a≤0,∴≤a≤1.综上可知≤a≤2.
10.已知函数f(x)=若f(x)在(-∞,+∞)上单调递增,则实数a的取值范围为________.
答案 {a|2<a≤3}
解析 ∵函数f(x)是(-∞,+∞)上的增函数,
∴a的取值需满足
解得2<a≤3.
11.讨论函数f(x)=loga(3x2-2x-1)的单调性.
解 由3x2-2x-1>0得函数的定义域为
.
则当a>1时,
若x>1,则u=3x2-2x-1为增函数,
∴f(x)=loga(3x2-2x-1)为增函数.
若x<-,则u=3x2-2x-1为减函数.
∴f(x)=loga(3x2-2x-1)为减函数.
当0<a<1时,
若x>1,则f(x)=loga(3x2-2x-1)为减函数;
若x<-,则f(x)=loga(3x2-2x-1)为增函数.
三、探究与创新
12.已知x满足不等式:2(logx)2+7logx+3≤0,求函数f(x)=·的最大值和最小值.
解 由2(logx)2+7logx+3≤0,
可解得-3≤logx≤-,即≤x≤8,
∴≤log2x≤3.
∵f(x)=(log2x-2)(log2x-1)
=2-,
∴当log2x=,即x=2时,f(x)有最小值-.
当log2x=3,即x=8时,f(x)有最大值2.
∴f(x)min=-,f(x)max=2.
13.已知f(x)=2+log3x,x∈[1,9],求y=[f(x)]2+f(x2)的最大值以及y取最大值时x的值.
解 ∵f(x)=2+log3x,
∴y=[f(x)]2+f(x2)
=(2+log3x)2+2+log3x2
=(2+log3x)2+2+2log3x
=(log3x)2+6log3x+6
=(log3x+3)2-3.
∵函数f(x)的定义域为[1,9],
∴要使函数y=[f(x)]2+f(x2)有意义,
必须满足∴1≤x≤3,
∴0≤log3x≤1.∴6≤y=(log3x+3)2-3≤13.
当log3x=1,即x=3时,y=13.
∴当x=3时,函数y=[f(x)]2+f(x2)取得最大值13.
相关文档
- 高中数学必修1教案:第九章直线平面2021-06-115页
- 高中数学必修1教案第二章 2_2_1 第2021-06-119页
- 高中数学必修1教案:第3章数列教材分2021-06-115页
- 高中数学必修1教案:第一章(第15课时2021-06-114页
- 高中数学必修1教案:第九章直线平面2021-06-106页
- 高中数学必修1教案:第四章(第21课时)2021-06-107页
- 高中数学必修1教案:第一章(第11课时2021-06-108页
- 高中数学必修1教案第一章 1_2_1函2021-06-109页
- 高中数学必修1教案:第一章(第19课时2021-06-104页
- 高中数学必修1教案:第二章(第22课时)2021-06-105页