- 2.18 MB
- 2021-06-11 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
www.ks5u.com
定远重点中学2020届高三下学期4月模拟考试文科数学
第I卷(选择题共60分)
一、选择题(共12小题,每小题5分,共60分)
1.已知集合,集合,则( )
A. B.
C. D.
【答案】C
【解析】
【分析】
先根据一元二次不等式计算出集合中表示元素范围,然后计算出的范围,最后根据交集的含义计算的结果.
【详解】因为,所以即,所以,
又因,所以.
故选C.
【点睛】本题考查集合的补集与交集混合运算,难度较易,注意一元二次不等式的解集的求解.
2.已知是虚数单位,复数,若,则 ( )
A. 0 B. 2 C. D. 1
【答案】A
【解析】
【分析】
通过复数的除法运算得到,再由模的求法得到方程,求解即可.
【详解】,因为,,即,解得:0
故选A
- 25 -
【点睛】本题考查了复数的运算法则、复数模的求法,考查了推理能力与计算能力,属于基础题,复数问题高考必考,常见考点有:点坐标和复数的对应关系,点的象限和复数的对应关系,复数的加减乘除运算,复数的模长的计算.
3.2019年1月1日,济南轨道交通号线试运行,济南轨道交通集团面向广大市民开展“参观体验,征求意见”活动,市民可以通过济南地铁APP抢票,小陈抢到了三张体验票,准备从四位朋友小王,小张,小刘,小李中随机选择两位与自己一起去参加体验活动,则小王被选中的概率为( )
A. B. C. D.
【答案】B
【解析】
【分析】
将所有符合要求的情况全部列出,然后选出符合要求的情况,利用古典概型的概率公式,得到答案.
【详解】从四位朋友小王,小张,小刘,小李中随机选择两位,全部的情况有:
(小王,小张)(小王,小刘)(小王,小李)(小张,小刘)(小张,小李)(小刘,小李),共6种
符合要求,即包含小王的情况有:(小王,小张)(小王,小刘)(小王,小李)共3种,
所以小王被选中的概率为
故选B项.
【点睛】本题考查古典概型的求法,属于简单题.
4.等比数列的各项均为实数,其前项和为,己知,则=( )
A. 32 B. 16 C. 4 D. 64
【答案】A
【解析】
【分析】
通过讨论的取值情况,确定,利用等比数列的求和公式,建立方程组,求出和,进而求得的值.
【详解】当公比 时可得,代入,与矛盾,所以
- 25 -
.由等比数列的前项和公式 ,可得,
两式相除,得 ,可解得或(舍),
当时,代入原式可求得,则由等比数列的通项公式.
故选:A.
【点睛】本题主要考查了等比数列求和公式的应用,利用方程思想求出首项和公比,属于简单题.
5.根据某校10位高一同学的身高(单位:cm)画出的茎叶图(图1),其中左边的数字从左到右分别表示学生身高的百位数字和十位数字,右边的数字表示学生身高的个位数字,设计一个程序框图(图2),用表示第个同学的身高,计算这些同学身高的方差,则程序框图①中要补充的语句是 ( )
A. B.
- 25 -
C D.
【答案】B
【解析】
【分析】
根据方差公式,将其化简得,结合流程图得循环结束,可得,从而可得,从而可得出答案.
【详解】由,循环退出时,知.
,故程序框图①中要补充的语句是.
故选B.
【点睛】把茎叶图与框图两部分内容进行交汇考查,体现了考题设计上的新颖,突出了高考中对创新能力的考查要求.算法表现形式有自然语言、程序框图、算法语句等三种.由于程序框图这一流程图形式与生产生活等实际问题联系密切,既直观、易懂,又需要一定的逻辑思维及推理能力,所以算法考查热点应是以客观题的形式考查程序框图这一内容.
6.若对圆上任意一点,的取值与,无关, 则实数a的取值范围是( )
A. B. C. 或 D.
【答案】D
【解析】
【分析】
根据点到直线距离公式,转化为点
- 25 -
到两条平行直线的距离之和来求解实数a的取值范围
【详解】依题意表示到两条平行直线和的距离之和与无关,故两条平行直线和在圆的两侧,画出图像如下图所示,故圆心到直线的距离,解得或(舍去)
故选D.
【点睛】本小题主要考查点到直线的距离公式,考查直线与圆的位置关系,考查数形结合的数学思想方法,考查化归与转化的数学思想方法,属于中档题.
7.函数的图象大致是( )
- 25 -
A. B.
C. D.
【答案】A
【解析】
【分析】
由函数为偶函数可排除C、D;由时,可排除B;即可得解.
【详解】函数的定义域为,定义域关于原点对称,
由,可得函数为偶函数,故C、D错误;
当时,由,可得,故B错误.
故选:A.
【点睛】本题考查了函数图象的识别和余弦函数的性质,属于基础题.
8.已知平面向量、,满足,若,则向量、的夹角为( )
A. B. C. D.
【答案】C
【解析】
【分析】
根据,以及和,即可求解出的值.
- 25 -
【详解】因为,所以,
所以,所以,
所以,所以.
故选:C.
【点睛】本题考查根据向量的模长以及垂直关系求解向量夹角,难度较易.已知向量的模长求解向量的夹角时,可通过数量积计算公式进行化简求解.
9.椭圆C:的左右顶点分别为,点P在C上且直线斜率的取值范围是,那么直线斜率的取值范围是( )
A. B. C. D.
【答案】B
【解析】
设P点坐标为,则,,,
于是,故.
∵∴.故选B.
【考点定位】直线与椭圆的位置关系
10.在正方体中,E是侧面内的动点,且平面,则直线与直线AB所成角的正弦值的最小值是
- 25 -
A.
B.
C.
D.
【答案】B
【解析】
【分析】
以D为原点,DA为x轴,DC为y轴,为z轴,建立空间直角坐标系利用向量法求出直线与直线AB所成角的正弦值的最小值.
【详解】解:以D为原点,DA为x轴,DC为y轴,为z轴,建立空间直角坐标系,
设正方体中棱长为1,
设0,,,,
1,,1,,
0,,1,,
,1,,1,,
设平面的法向量y,,
- 25 -
则,取,
得,
平面,
,解得,
,,
设直线与直线AB所成角为,
1,,
,,,
.
直线与直线AB所成角的正弦值的最小值是.
故选B.
【点睛】本题考查线线角的正弦值的最小值的求法,空间中线线、线面、面面间的位置关系等基础知识,函数与方程思想,是中档题.
11.定义在上连续函数满足,且时,恒成立,则不等式的解集为( )
A. B. C. D.
【答案】A
【解析】
- 25 -
分析】
令,易得函数为奇函数,求导后即可得函数在上单调递减,转化条件得,即可得解.
【详解】,,
令,则,
函数为奇函数,
当时,,函数在上单调递减,
又函数为连续函数,函数在上单调递减,
不等式可转化为,
即,,解得.
故选:A.
【点睛】本题考查了函数与导数的综合应用,考查了构造新函数和推理能力,属于中档题.
12.已知关于的方程在区间上有两个根,,且,则实数的取值范围是( )
A. B. C. D.
【答案】D
【解析】
【分析】
由诱导公式及三角恒等变换得,转化条件得函数与的图象在上有两个交点,且,画出函数的图象,数形结合即可得解.
- 25 -
【详解】,
,
原方程在区间上有两个根,即函数与的图象在上有两个交点,
画出函数的图象,如图,
数形结合可知,若要使函数与的图象在由两个交点,
且,
则.
故选:D.
【点睛】本题考查了诱导公式和三角恒等变换的综合应用,考查了三角函数的图象与性质及数形结合思想,属于中档题.
第II卷(非选择题90分)
二、填空题(共4小题,每小题5分,共20分)
13.某工厂产生的废气经过过滤后排放,过滤过程中废气的污染物数量P(毫克/升)与时间t(小时)的关系为P=P0e-kt.如果在前5小时消除了10%的污染物,那么污染物减少19%需要花费的时间为________小时.
【答案】10
- 25 -
【解析】
前5小时污染物消除了10%,此时污染物剩下90%,即t=5时,P=0.9P0,代入,得(e-k)5=0.9,∴e-k==0.9,∴P=P0e-kt=P0t.当污染物减少19%时,污染物剩下81%,此时P=0.81P0,代入得0.81=t,解得t=10,即需要花费10小时.
14.已知变量满足约束条件,若不等式恒成立,则实数的最大值为 __________.
【答案】
【解析】
作出可行域如图所示:
设,由可行域易知.又由得:,即,而,所以的最小值为,所以,故填.
点睛:本题将线性规划问题与函数的最大值问题相结合,突出了创新思路,首先要对参数分离,分离参数后求
- 25 -
的最小值,这种处理变换式子的能力需要强化,然后换元为,结合可行域求出的取值范围,从而求出最值.
15.如图,正方形的边长为,点分别在边上, 且.将此正方形沿切割得到四个三角形,现用这四个三角形作为一个三棱锥的四个面,则该三棱锥的内切球的体积为________.
【答案】
【解析】
分析:由题意首先确定几何体的空间结构,然后利用体积相等求得内切球半径,最后求解内切球的体积即可.
详解:如图所示,在长宽高分别为的长方体中,
三棱锥即为题中所给的四个面组成的三棱锥,
该三棱锥的体积:,
在△AB1C,由勾股定理易得:,
由余弦定理可得:,
则,
故,
该三棱锥的表面积为:,
设三棱锥外接球半径为,则:,
- 25 -
即:,
该三棱锥的体积:.
点睛:与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径.
16.已知双曲线的左右焦点分别为,过点的直线交双曲线右支于两点,若是以为直角顶点的等腰三角形,则的面积为__________.
【答案】
【解析】
【分析】
根据题意设,可得,根据双曲线的定义求得的值,然后利用三角形的面积公式可求得的面积.
【详解】设,则,
根据双曲线的定义,有,即,.
- 25 -
则,,所以,,
故面积为.
故答案为:.
【点睛】本题主要考查双曲线的定义,考查直线与圆锥曲线的位置关系,考查数形结合的数学思想方法和化归与转化的数学思想方法.解答直线与圆锥曲线位置关系题目时,首先根据题意画出曲线的图像,然后结合圆锥曲线的定义和题目所给已知条件来求解.利用题目所给等腰直角三角形,结合定义可求得直角三角形的边长,由此求得面积.
三、解答题(本大题共6小题,共70分.解答应写需给出文字说明,证明过程或演算步骤.)
17.某城市的公交公司为了方便市民出行,科学规划车辆投放,在一个人员密集流动地段增设一个起点站,为了研究车辆发车间隔时间与乘客等候人数之间的关系,经过调查得到如下数据:
间隔时间(分钟)
10
11
12
13
14
15
等侯人数(人)
23
25
26
29
28
31
调查小组先从这6组数据中选取4组数据求线性回归方程,再用剩下的2组数据进行检验.检验方法如下:先用求得的线性回归方程计算间隔时间对应的等候人数,再求与实际等候人数的差,若差值的绝对值不超过1,则称所求方程是“恰当回归方程”.
(1)若选取的是后面4组数据,求关于的线性回归方程,并判断此方程是否是“恰当回归方程”;
(2)为了使等候的乘客不超过35人,试用(1)中方程估计间隔时间最多可以设置为多少(精确到整数)分钟?
附:对于一组数据,,……,,其回归直线的斜率和截距的最小二乘估计分别为:,
- 25 -
【答案】(1),是;(2)18分钟.
【解析】
【分析】
(1)由题意求出、、、,代入公式求得、即可求得线性回归方程;根据“恰当回归方程”的概念直接判断即可得解;
(2)令,解出后,即可得解.
【详解】(1)由后面四组数据求得,,
,,
∴,
.
∴.
当时,,而;
当时,,而.
∴求出的线性回归方程是“恰当回归方程”;
(2)由,得,故间隔时间最多可设置为分钟.
【点睛】本题考查了线性回归方程的求解及应用,考查了运算能力及对于新概念的理解,属于中档题.
18.已知数列{}的前n项和Sn=n2-5n (n∈N+).
(1)求数列{}的通项公式;
- 25 -
(2)求数列{}的前n项和Tn .
【答案】(1);(2)
【解析】
【分析】
(1)运用数列的递推式:,计算可得数列{}的通项公式;(2)结合(1)求得,运用错位相减法,结合等比数列的求和公式,即可得到数列{}的前项和 .
【详解】(1)因为,
所以,时,
也适合,所以
(2)因为,
所以
两式作差得:
化简得,
所以.
【点睛】本题考查数列的通项公式的求法,等比数列的求和公式,考查数列的错位相减法,属于中档题. “错位相减法”求数列的和是重点也是难点,利用“错位相减法”求数列的和应注意以下几点:①掌握运用“错位相减法”求数列的和的条件(一个等差数列与一个等比数列的积);②相减时注意最后一项的符号;③求和时注意项数别出错;④最后结果一定不能忘记等式两边同时除以.
19.如图,边长为2的正方形ABCD中,E、F分别是AB、BC边的中点,将,分别沿DE,DF折起,使得A,C两点重合于点M.
- 25 -
(1) 求证:;
(2) 求三棱锥的体积.
【答案】(1)见解析;(2)
【解析】
【分析】
(1)在正方形ABCD中,有,,在三棱锥中,可得,,由线面垂直的判定可得面MEF,则;
(2)由E、F分别是AB、BC边的中点,可得,求出三角形MEF的面积,结合及棱锥体积公式求解.
【详解】(1)证明:在正方形ABCD中,,,
在三棱锥中,有,,且,
面MEF,则;
(2)解:、F分别是边长为2的正方形ABCD中AB、BC边的中点,
,
,
由(1)知,.
【点睛】本题考查线面垂直的判定定理及性质定理的应用,考查棱锥体积的求法,是中档题.
20.设函数.
(Ⅰ)讨论函数的单调性;
(Ⅱ)若函数的极大值点为,证明:.
- 25 -
【答案】(Ⅰ)答案见解析;(Ⅱ)证明见解析.
【解析】
分析:(Ⅰ)的定义域为,,据此分类讨论可得:当时,函数在区间单调递增;当时,函数在区间上单调递减,在区间上单调递增;当时,函数在区间上单调递增,在区间上单调递减.
(Ⅱ)由(Ⅰ)知,原问题等价于证明.构造函数 ,结合导函数的特征再次构造函数,结合函数的性质即可证得题中的结论.
详解:(Ⅰ)的定义域为,,
当时,,则函数在区间单调递增;
当时,由得,由得.
所以,在区间上单调递减,在区间上单调递增;
当时,由得,由得,
所以,函数在区间上单调递增,在区间单调递减.
综上所述,当时,函数在区间单调递增;
当时,函数在区间上单调递减,在区间上单调递增;
当时,函数在区间上单调递增,在区间上单调递减.
- 25 -
(Ⅱ)由(Ⅰ)知且时,解得.,
要证,即证,即证:.
令 ,则 .
令,易见函数在区间上单调递增.
而,,
所以在区间上存在唯一的实数,使得,
即,且时,时.
故在上递减,在上递增.
∴ .
又,∴ .
∴成立,即成立.
点睛:导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,所以在历届高考中,对导数的应用的考查都非常突出 ,本专题在高考中的命题方向及命题角度 从高考来看,对导数的应用的考查主要从以下几个角度进行: (1)考查导数的几何意义,往往与解析几何、微积分相联系. (2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数. (3)利用导数求函数的最值(极值),解决生活中的优化问题. (4)考查数形结合思想的应用.
21.动点在抛物线上,过点作垂直于轴,垂足为,设.
(Ⅰ)求点的轨迹的方程;
(Ⅱ)设点,过点的直线交轨迹于两点,直线的斜率分别为,求的最小值.
【答案】(Ⅰ)(Ⅱ)1
- 25 -
【解析】
【分析】
(1)设Q(x,y),则P(x,2y),代入x2=2y得出轨迹方程;
(2)联立直线AB方程与Q的轨迹方程,得出A,B的坐标关系,代入斜率公式化简|k1﹣k2|,利用二次函数的性质求出最小值.
【详解】(Ⅰ)设点,则由得,因点在抛物线上,
(Ⅱ)方法一:由已知,直线的斜率一定存在,设点,
联立得
由韦达定理得
(1)当直线经过点即或时,当时,直线的斜率看作抛物线在点处的切线斜率,则,此时;当时,同理可得
(2)当直线不经过点即且时,,
所以的最小值为.
方法二:同上
- 25 -
故,所以的最小值为
方法三:设点,由直线过点交轨迹于两点得: 化简整理得:
,令,则
【点睛】本题考查了轨迹方程的求解,直线与抛物线的位置关系,直线的斜率公式,属于中档题.
请考生在22、23两题中任选一题作答,注意:只能做选定的题目,如果多做,则按所做的第一题记分.
选修4-4:坐标系与参数方程
22.【选修4-4:坐标系与参数方程】
在平面直角坐标系,已知曲线(为参数),在以原点为极点,轴的非负半轴为极轴建立的极坐标系中,直线的极坐标方程为.
(1)求曲线的普通方程和直线的直角坐标方程;
(2)过点且与直线平行的直线交于,两点,求点到,的距离之积.
【答案】(1)曲线:,直线的直角坐标方程;(2)1.
- 25 -
【解析】
试题分析:(1)先根据三角函数平方关系消参数得曲线化为普通方程,再根据 将直线的极坐标方程化为直角坐标方程;(2)根据题意设直线参数方程,代入C方程,利用参数几何意义以及韦达定理得点到,的距离之积
试题解析:(1)曲线化为普通方程为:,
由,得,
所以直线的直角坐标方程为.
(2)直线的参数方程为(为参数),
代入化简得:,
设两点所对应的参数分别为,则,
.
选修4-5:不等式选讲
23.已知函数.
(1)当时,求不等式的解集;
(2)若二次函数与函数的图象恒有公共点,求实数的取值范围.
【答案】(Ⅰ);(Ⅱ)
【解析】
试题分析:(1)当m=5时,把要解的不等式等价转化为与之等价的三个不等式组,求出每个不等式组的解集,再取并集,即得所求.
(2)由二次函数y=x2+2x+3=(x+1)2+2在x=﹣1取得最小值2,f(x)在x=﹣1处取得最大值m﹣2,故有m﹣2≥2,由此求得m的范围.
- 25 -
试题解析:
(1)当时,,
由得不等式的解集为.
(2)由二次函数,
知函数在取得最小值2,
因为,在处取得最大值,
所以要是二次函数与函数的图象恒有公共点.
只需,即.
- 25 -
- 25 -
相关文档
- 2018-2019学年安徽省滁州市定远县2021-06-116页
- 【数学】安徽省滁州市定远县重点中2021-06-1116页
- 数学文卷·2017届江西省南昌市八一2021-06-118页
- 陕西省咸阳市武功县2020届高三下学2021-06-118页
- 数学理卷·2019届安徽省滁州市定远2021-06-1111页
- 江苏省百校2020届高三下学期第四次2021-06-1126页
- 陕西省渭南市韩城市司马迁中学20202021-06-1110页
- 天津市河西区2019届高三下学期总复2021-06-1111页
- 甘肃省武威第六中学2020届高三下学2021-06-1110页
- 湖南省长郡中学2020届高三下学期第2021-06-119页