- 37.50 KB
- 2021-06-11 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
排列与组合备考策略
主标题:排列与组合备考策略
副标题:通过考点分析高考命题方向,把握高考规律,为学生备考复习打通快速通道。
关键词:排列,组合,备考策略
难度:2
重要程度:4
考点一 排列应用题
【例1】 4个男同学,3个女同学站成一排.
(1)3个女同学必须排在一起,有多少种不同的排法?
(2)任何两个女同学彼此不相邻,有多少种不同的排法?
(3)甲、乙两人相邻,但都不与丙相邻,有多少种不同的排法?
解 (1)3个女同学是特殊元素,共有A种排法;由于3个女同学必须排在一起,视排好的女同学为一整体,再与4个男同学排队,应有A种排法.
由分步乘法计数原理,有AA=720种不同排法.
(2)先将男生排好,共有A种排法,再在这4个男生的中间及两头的5个空档中插入3个女生有A种方法.
故符合条件的排法共有AA=1 440种不同排法.
(3)先排甲、乙和丙3人以外的其他4人,有A种排法;由于甲、乙要相邻,故先把甲、乙排好,有A种排法;最后把甲、乙排好的这个整体与丙分别插入原先排好的4人的空档及两边有A种排法.
总共有AAA=960种不同排法.
【备考策略】(1)对于有限制条件的排列问题,分析问题时有位置分析法、元素分析法,在实际进行排列时一般采用特殊元素优先原则,即先安排有限制条件的元素或有限制条件的位置,对于分类过多的问题可以采用间接法.
(2)对相邻问题采用捆绑法、不相邻问题采用插空法、定序问题采用倍缩法是解决有限制条件的排列问题的常用方法.
考点二 组合应用题
【例2】 某课外活动小组共13人,其中男生8人,女生5人,并且男、女生各指定一名队长.现从中选5人主持某种活动,依下列条件各有多少种选法?
(1)只有一名女生;
(2)两队长当选;
(3)至少有一名队长当选;
(4)至多有两名女生当选;
(5)既要有队长,又要有女生当选.
解 (1)一名女生,四名男生.故共有C·C=350(种).
(2)将两队长作为一类,其他11人作为一类,故共有C·C=165(种).
(3)至少有一名队长含有两类:只有一名队长和两名队长.故共有:C·C+C·C=825(种)或采用排除法:C-C=825(种).
(4)至多有两名女生含有三类:有两名女生、只有一名女生、没有女生.故选法为:
C·C+C·C+C=966(种).
(5)分两类:第一类女队长当选:C;第二类女队长不当选:
C·C+C·C+C·C+C.
故选法共有:
C+C·C+C·C+C·C+C=790(种).
【备考策略】组合问题常有以下两类题型变化
(1)“含有”或“不含有”某些元素的组合题型:“含”,则先将这些元素取出,再由另外元素补足;“不含”,则先将这些元素剔除,再从剩下的元素中去选取.
(2)“至少”或“最多”含有几个元素的题型:若直接法分类复杂时,逆向思维,间接求解.
考点三 排列、组合的综合应用
【例3】 (1)将A,B,C,D,E,F六个字母排成一排,且A,B均在C的同侧,则不同的排法共有________种(用数字作答).
(2)某校高二年级共有6个班级,现从外地转入4名学生,要安排到该年级的两个班级且每班安排2名,则不同的安排方案种数为( ).
A.AC B.AC C.AA D.2A
审题路线 (1)选出3个位置排特殊元素A、B、C,并把元素A、B作为元素集团进行排列;(2)可将4名同学分成两组(每组2人),再分配到两个班级.
解析 (1)先将A,B视为元素集团,与C先排在6个位置的三个位置上,有CAC种排法;
第二步,排其余的3个元素有A种方法.
∴由分步乘法计数原理,共有CAC·A=480种排法.
(2)法一 将4人平均分成两组有C种方法,将此两组分配到6个班级中的2个班有A种.
所以不同的安排方法有CA种.
法二 先从6个班级中选2个班级有C种不同方法,然后安排学生有CC种,故有CC=AC种.
答案 (1)480 (2)B
【备考策略】 (1)解排列组合问题要遵循两个原则:一是按元素(或位置)的性质进行分类;二是按事情发生的过程进行分步.具体地说,解排列组合问题常以元素(或位置)为主体,即先满足特殊元素(或位置),再考虑其他元素(或位置).
(2)不同元素的分配问题,往往是先分组再分配.在分组时,通常有三种类型:①不均匀分组;②均匀分组;③部分均匀分组,注意各种分组类型中,不同分组方法的求法.