- 35.50 KB
- 2021-06-11 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
基本不等式及其应用
主标题:基本不等式及其应用
副标题:为学生详细的分析基本不等式及其应用问题的高考考点、命题方向以及规律总结。
关键词:不等式,基本不等式及其应用,知识总结
难度:3
重要程度:5
考点剖析:
1.了解基本不等式的证明过程;
2.会用基本不等式解决简单的最大(小)值问题.
命题方向:
1. 对基本不等式的考查,主要是利用不等式求最值,且常与函数、数列、解析几何等知识结合在一起进行考查;
2. 本考点主要以选择题或填空题的形式进行考查,有时也以简答题的形式考查利用基本不等式解决最值问题.
规律总结:
两种方法:
(1)合理拆分项或配凑因式是常用的技巧,而拆与凑的目标在于使等号成立,且每项为正值,必要时需出现积为定值或和为定值.
(2)当多次使用基本不等式时,一定要注意每次是否能保证等号成立,并且要注意取等号的条件的一致性,否则就会出错,因此在利用基本不等式处理问题时,列出等号成立的条件不仅是解题的必要步骤,而且也是检验转换是否有误的一种方法.
两个误区:
(1)在利用基本不等式求最值(值域)时,过多地关注形式上的满足,极容易忽视符号和等号成立条件的满足,这是造成解题失误的重要原因.如函数y=1+2x+(x<0)有最大值1-2而不是有最小值1+2.
(2)当多次使用基本不等式时,一定要注意每次是否都能保证等号成立,并且要注意取等号条件的一致性,否则就会出错.
知识点总结:
一、基本不等式
基本不等式
不等式成立的条件
等号成立的条件
≤
a>0,b>0
a=b
二、常用的几个重要不等式
(1)a2+b2≥2ab(a,b∈R) (2)ab≤()2(a,b∈R)
(3)≥()2(a,b∈R) (4)+≥2(a,b同号且不为零)
上述四个不等式等号成立的条件都是a=b.
三、算术平均数与几何平均数
设a>0,b>0,则a,b的算术平均数为,几何平均数为,基本不等式可叙述为:两个正数的算术平均数不小于它们的几何平均数.
四个“平均数”的大小关系;a,b∈R+:
当且仅当a=b时取等号.
四、利用基本不等式求最值:设x,y都是正数.
(1)如果积xy是定值P,那么当x=y时和x+y有最小值2.
(2)如果和x+y是定值S,那么当x=y时积xy有最大值S2.
强调:在使用“和为常数,积有最大值”和“积为常数,和有最小值”这两个结论时,应把握三点:“一正、二定、三相等”.当条件不完全具备时,应创造条件.
正:两项必须都是正数;
定:求两项和的最小值,它们的积应为定值;求两项积的最大值,它们的和应为定值。
等:等号成立的条件必须存在.
相关文档
- 高考数学专题复习教案: 复数加、减2021-06-112页
- 高考数学专题复习教案: 函数y=Asin(2021-06-112页
- 高考数学专题复习教案: 数列的综合2021-06-111页
- 高考数学专题复习教案: 函数的概念2021-06-112页
- 高考数学专题复习教案: 排列与组合2021-06-113页
- 高考数学专题复习教案: 曲线与方程2021-06-113页
- 高考数学专题复习教案: 数量积的概2021-06-112页
- 高考数学专题复习教案: 用样本估计2021-06-112页
- 高考数学专题复习教案: 二项式定理2021-06-112页
- 高考数学专题复习教案: 简单的逻辑2021-06-111页