- 1.91 MB
- 2021-06-15 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
高三一模数学(文科)参考答案 第 1 页
2019
数学(文科)参考答案
一、选择题(本大题共 12 小题,每小题 5 分,共 60 分)
题号 1 2 3 4 5 6 7 8 9 10 11 12
答案 D B C A B B D A D B D C
二、填空题(本大题共 4 小题,每小题 5 分,共 20 分)
13.-
3
2 a+
3
1 b 14.1+ 5 15.
25
72 16.a3+b3-c3<0
三、解答题(共 70 分。解答应写出文字说明、证明过程或演算步骤)
17.解:(Ⅰ)∵ nS2 是 an 与 an+1 的等比中项,
∴ nnnnn aaaaS 212 ,
当 n=1 时, 1
2
112 aaa ,∴ a1=1.·····································(2 分)
当 n≥2 时, 1
2
1
2
1222 nnnnnnn aaaaSSa ,
整理得 0111 nnnn aaaa .······································(3 分)
又 an>0,∴ 211 naa nn ,
即数列 na 是首项为 1,公差为 1 的等差数列.
∴ nndnaan 1111 .·····································(6 分)
(Ⅱ)
1
1111
121 11
nnnn
nb nn
n ,··························(9 分)
∴T2n=b1+b2+b3+…+b2n=(1+
2
1 )-(
2
1 +
3
1 )+(
3
1 +
4
1 )-…+(
12
1
n
+
n2
1 )-(
n2
1 +
12
1
n
)=1-
12
1
n
<1.··································(12 分)
18.解:(Ⅰ)调整前 y 关于 x 的表达式为 y=
80005000,1.0500045
50003500,03.03500
3500,0
xx
xx
x
,
········································(2 分)
调整后 y 关于 x 的表达式为 y=
80005000,03.05000
5000,0
xx
x .··········(4 分)
(Ⅱ)由频数分布表可知从[3000,5000)及[5000,7000)的人群中按分层抽样抽取
7 人,其中[3000,5000)中占 3 人,分别记为 A,B,C,[ 5000,7000)中占 4 人,分别
记为 1,2,3,4,再从这 7 人中选 2 人的所有组合有:AB,AC,A1,A2,A3,A4,BC,
高三一模数学(文科)参考答案 第 2 页
B1,B2,B3,B4,C1,C2,C3,C4,12,13,14,23,24,34,共 21 种情况,
其中不在同一收入人群的有:A1,A2,A3,A4,B1,B2,B3,B4,C1,C2,C3,C4,
共 12 种,
所以所求概率为 P=
21
12 =
7
4 .···········································(8 分)
(Ⅲ)由于小红的工资、薪金等税前收入为 7500 元,
按调整起征点前应纳个税为 1500×3%+2500×10%=295 元;···············(10 分)
按调整起征点后应纳个税为 2500×3%=75 元,
由此可知,调整起征点后应纳个税少交 220 元,
即个人的实际收入增加了 220 元,
所以小红的实际收入增加了 220 元.······································(12 分)
19.解:(Ⅰ)过点 P 作 PO⊥AD,垂足为 O.··································(1 分)
由于点 P 在平面 ABCD 内的射影恰好在 AD 上,
∴PO⊥平面 ABCD.
∴PO⊥AB.···························································(2 分)
∵四边形 ABCD 为矩形,∴AB⊥AD.
又 AD PO=O,∴AB⊥平面 PAD,
∴AB⊥PD.···························································(3 分)
又由 AB=3,PB=3 2 ,可得 PA=3,
同理 PD=3.··························································(4 分)
又 AD=3 2 ,
∴PA 2+PD2=AD2,
∴PA⊥PD,且 PA AB=A,
∴PD⊥平面 PAB.······················································(5 分)
(Ⅱ)设点 E 到底面 QBC 的距离为 h,
A B
D C
P
Q
E
P
A B
D C
O
高三一模数学(文科)参考答案 第 3 页
则 hSVV QBCQBCEEBCQ 3
1 .········································(7分)
由 PBPE 3
1 ,可知
3
2BP
BE ,
∴ 22
23
3
2
3
2 hPO
h .·······································(8 分)
又
2
293232
1
2
1 ABBCS QBC ,···························(10 分)
∴ 322
29
3
1
3
1 hSV QBCEBCQ .·····························(12 分)
20.( Ⅰ)设 xMF 2 ,则 MFF 21 内,
由余弦定理得
2
22
5
14120cos222
xx ,
化简得 05
6
5
16
xx ,解得
5
6x ,
故 42 21 MFMFa ,
∴ 2a ,得 3222 cab ,
所以椭圆 C 的标准方程为 134
22
yx .···································(4 分)
(Ⅱ)已知 A(-2,0), B(2,0), 设 T(x,y), P(x1,y1), Q(x2,y2),
由
22 1
1
x
y
x
ykk PATA ,①
22 2
2
x
y
x
ykk QBTB ,②
两式相除得
2
2
1
1 2
22
2
y
x
x
y
x
x
.·······································(6 分)
又
4
3
4
44
3
422 2
1
2
1
2
1
2
1
1
1
1
1
x
x
x
y
x
y
x
y ,
故
1
1
1
1 2
4
3
2 y
x
x
y
,
高三一模数学(文科)参考答案 第 4 页
故
21
21
2
2
1
1 22
4
32
22
2
yy
xx
y
x
x
y
x
x
,③ ························(8 分)
设 PQ 的方程为 1 myx ,代入 134
22
yx 整理,
得 09643 22 myym ,
>0 恒成立.························································(10 分)
把
43
9
43
6
221
221
myy
m
myy
代入③,
得
3
1
43
9
143
6
43
9
4
3
1
4
311
4
3
2
2
2
22
2
21
2121
2
21
21
m
m
mmmm
yy
yymyym
yy
mymy
x
x
,
得到 x=4,故点 T 在定直线 x=4 上.····································(12 分)
21.解:(Ⅰ)因为 f(x)为奇函数,其图象关于原点对称,所以只需考虑 x∈(0,+∞)
上的极值点个数,
,0,1ln9
1 23 xxxxxxf 时,
2
22
2
2
1
1113
1
1
113
1
x
xx
x
xxf
.·······················(1 分)
令 1113
1 22
xxxh , 22
3
1
3
3
3
3
1
3
1
x
xxx
x
xx
xh
,
∴当
3
3,0x 时, xhxh ,0 单调递减,当
,3
3x 时, xhxh ,0 单
调递增,
∴ 003
3
hh .··················································(3 分)
取 017161163
16,6
hx ,
高三一模数学(文科)参考答案 第 5 页
∴在区间
,3
3 上存在唯一的 x0 使 00 xh .··························(4 分)
∴f(x)在区间 0,0 x 上单调递减,在区间 ,0x 上单调递增.··············(5 分)
又 f(x)为奇函数,
∴f(x)在区间 0, x 上单调递增,在区间 00, xx 上单调递减,在区间 ,0x 上
单调递增,
∴f(x)的极值点共 2 个.···············································(6 分)
(Ⅱ)由(Ⅰ)可知 f(x)在区间
3
3,0 内单调递减,且 f(x)<0 恒成立.··(7 分)
∴
3
3,0x 时, 01ln9
1 23 xxxx ,
即得 xxxx 23 1ln9
1 .··········································(8 分)
又令
3
3,04
1 n
x ,
得
nnnn
na
4
1
4
114
1ln4
1
9
1 23
.························(10 分)
∴
3
1
4
113
1
4
11
4
114
1
4
1…4
1
4
1
4
1…
32
321
n
n
n
naaaa
.··(12 分)
22.解:(Ⅰ)
32
12:1 ty
txC 消去 t,得 4 yx .又
sin
cos
y
x ,代入 4 yx 得:
04sincos .
∴
0224sin:
044sin204cossin
1
C
.················(2 分)
C2:p=2a cos 化为:(x-a)2+y2=a2(a>0),又 C2 关于 C1:x-y=4 对称,
∴(a,0)∈C1,∴a=4,∴C2:( x-4)2+y2=16.························(4 分)
高三一模数学(文科)参考答案 第 6 页
(Ⅱ)C2 向左平移 4 个单位长度得:x2+y2=16,按
yy
xx
2
3 变换后得:x2+
2
3
2
y
=16 16
2x +
12
2y =1.······················································(6 分)
∴C3: + =1,∴令 A(4,0), B(0,2 3 ),∴ AB =2 7 .
易得:lAB: 3 x+2y-4 3 =0,设 P(4cos ,2 sin )到 lAB 的距离为 d.
则 d=
7
34cos34sin34
=
7
14sin234
≤
7
1234 .
······································(8 分)
当 sin( +
4
)=-1 +
4
= 2
3 = 4
5 时,d 有最大值
7
1234 .
∴( S△ABP)max= AB2
1 d=
2
1 ×2 7 ×
7
1234 =4 3 +4 6 .········(10 分)
23.解:(Ⅰ)
2
1,13
2
10,1
0,13
12
xx
xx
xx
xxxf ,
由 4xf 解得 1x 或
3
5x .········································(5 分)
(Ⅱ)∵ 38
3628
36
8
3168
333
2222 abababababbaabba
.
当 a=b=2 时等号成立,即知 312 xxxf .
解方程,分情况讨论:①当 x≤0 时,-3x+1<3,故
3
2 <x≤0;②当 x≥
2
1 时,3x
-1<3,故
2
1 ≤x<
3
4 ;③当 0<x<
2
1 ,满足 1-x<3.
∴x 的取值集合为 M=
3
4
3
2 xx .·································(10 分)
相关文档
- 2020年天津市滨海新区高考数学模拟2021-06-1516页
- 2020年浙江省金华市十校高考数学模2021-06-1515页
- 2018-2019学年山西省汾阳中学高一2021-06-159页
- 陕西省榆林市绥德县绥德中学2019-22021-06-1510页
- 2005年海南省高考数学试卷Ⅰ(理)【附2021-06-156页
- 2021北京市新高三入学定位考试数学2021-06-1518页
- 贵州省黔东南州凯里市第三中学20192021-06-156页
- 黑龙江省安达七中2020届高三上学期2021-06-1511页
- 2012年江苏省高考数学试卷2021-06-1528页
- 山西省长治市第二中学2019-2020学2021-06-157页