- 532.00 KB
- 2021-06-16 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
2.1.2指数函数及其性质(2个课时)
一. 教学目标:
1.知识与技能
①通过实际问题了解指数函数的实际背景;
②理解指数函数的概念和意义,根据图象理解和掌握指数函数的性质.
③体会具体到一般数学讨论方式及数形结合的思想;
2.情感、态度、价值观
①让学生了解数学来自生活,数学又服务于生活的哲理.
②培养学生观察问题,分析问题的能力.
3.过程与方法
展示函数图象,让学生通过观察,进而研究指数函数的性质.
二.重、难点
重点:指数函数的概念和性质及其应用.
难点:指数函数性质的归纳,概括及其应用.
三、学法与教具:
①学法:观察法、讲授法及讨论法.
②教具:多媒体.
第一课时
一.教学设想:
1. 情境设置
①在本章的开头,问题(1)中时间与GDP值中的
,请问这两个函数有什么共同特征.
②这两个函数有什么共同特征
——————————————第 9 页 (共 9页)——————————————
,从而得出这两个关系式中的底数是一个正数,自变量为指数,即都可以用(>0且≠1来表示).
二.讲授新课
指数函数的定义
一般地,函数(>0且≠1)叫做指数函数,其中是自变量,函数的定义域为R.
提问:在下列的关系式中,哪些不是指数函数,为什么?
(1) (2) (3)
(4) (5) (6)
(7) (8) (>1,且)
小结:根据指数函数的定义来判断说明:因为>0,是任意一个实数时,是一个确定的实数,所以函数的定义域为实数集R.
若<0,如在实数范围内的函数值不存在.
若=1, 是一个常量,没有研究的意义,只有满足的形式才能称为指数函数,不符合.
我们在学习函数的单调性的时候,主要是根据函数的图象,即用数形结合的方法来研究. 下面我们通过
先来研究>1的情况
用计算机完成以下表格,并且用计算机画出函数的图象
——————————————第 9 页 (共 9页)——————————————
1
2
4
y=2x
-
-
-
-
-
-
-
-
-
-
-
-
-
-
x
y
0
再研究,0<<1的情况,用计算机完成以下表格并绘出函数的图象.
1
2
4
-
-
-
-
-
-
-
-
-
-
-
-
-
-
x
y
0
-
-
-
-
-
-
-
-
-
-
-
-
-
-
x
y
0
——————————————第 9 页 (共 9页)——————————————
从图中我们看出
通过图象看出实质是上的
讨论:的图象关于轴对称,所以这两个函数是偶函数,对吗?
0
②利用电脑软件画出的函数图象.
问题:1:从画出的图象中,你能发现函数的图象与底数间有什么样的规律.
从图上看(>1)与(0<<1)两函数图象的特征.
——————————————第 9 页 (共 9页)——————————————
0
问题2:根据函数的图象研究函数的定义域、值域、特殊点、单调性、最大(小)值、奇偶性.
问题3:指数函数(>0且≠1),当底数越大时,函数图象间有什么样的关系.
图象特征
函数性质
>1
0<<1
>1
0<<1
向轴正负方向无限延伸
函数的定义域为R
图象关于原点和轴不对称
非奇非偶函数
函数图象都在轴上方
函数的值域为R+
函数图象都过定点(0,1)
=1
自左向右,
图象逐渐上升
自左向右,
图象逐渐下降
增函数
减函数
在第一象限内的图
象纵坐标都大于1
在第一象限内的图
象纵坐标都小于1
>0,>1
>0,<1
在第二象限内的图
象纵坐标都小于1
在第二象限内的图
象纵坐标都大于1
<0,<1
<0,>1
5.利用函数的单调性,结合图象还可以看出:
(1)在(>0且≠1)值域是
(2)若
(3)对于指数函数(>0且≠1),总有
(4)当>1时,若<,则<;
——————————————第 9 页 (共 9页)——————————————
例题:
例1:(P66 例6)已知指数函数(>0且≠1)的图象过点(3,π),求
分析:要求再把0,1,3分别代入,即可求得
提问:要求出指数函数,需要几个条件?
课堂练习:P68 练习:第1,2,3题
补充练习:1、函数
2、当
解(1)
(2)(-,1)
例2:求下列函数的定义域:
(1) (2)
分析:类为的定义域是R,所以,要使(1),(2)题的定义域,保要使其指数部分有意义就得 .
3.归纳小结
作业:P69 习题2.1 A组第5、6题
1、理解指数函数
2、解题利用指数函数的图象,可有利于清晰地分析题目,培养数型结合与分类讨论的数学思想 .
第2课时
教学过程:
1、复习指数函数的图象和性质
——————————————第 9 页 (共 9页)——————————————
2、例题
例1:(P66例7)比较下列各题中的个值的大小
(1)1.72.5 与 1.73
( 2 )与
( 3 ) 1.70.3 与 0.93.1
0
解法1:用数形结合的方法,如第(1)小题,用图形计算器或计算机画出的图象,在图象上找出横坐标分别为2.5, 3的点,显然,图象上横坐标就为3的点在横坐标为2.5的点的上方,所以 .
解法2:用计算器直接计算:
所以,
解法3:由函数的单调性考虑
因为指数函数在R上是增函数,且2.5<3,所以,
仿照以上方法可以解决第(2)小题 .
注:在第(3)小题中,可以用解法1,解法2解决,但解法3不适合 .
由于1.70.3=0.93.1不能直接看成某个函数的两个值,因此,在这两个数值间找到1,把这两数值分别与1比较大小,进而比较1.70.3与0.93.1的大小 .
思考:
1、已知按大小顺序排列.
2. 比较(>0且≠0).
指数函数不仅能比较与它有关的值的大小,在现实生活中,也有很多实际的应用.
例2(P67
——————————————第 9 页 (共 9页)——————————————
例8)截止到1999年底,我们人口哟13亿,如果今后,能将人口年平均均增长率控制在1%,那么经过20年后,我国人口数最多为多少(精确到亿)?
分析:可以先考试一年一年增长的情况,再从中发现规律,最后解决问题:
1999年底 人口约为13亿
经过1年 人口约为13(1+1%)亿
经过2年 人口约为13(1+1%)(1+1%)=13(1+1%)2亿
经过3年 人口约为13(1+1%)2(1+1%)=13(1+1%)3亿
经过年 人口约为13(1+1%)亿
经过20年 人口约为13(1+1%)20亿
解:设今后人口年平均增长率为1%,经过年后,我国人口数为亿,则
当=20时,
答:经过20年后,我国人口数最多为16亿.
小结:类似上面此题,设原值为N,平均增长率为P,则对于经过时间后总量,>0且≠1)的函数称为指数型函数 .
思考:P68探究:
(1)如果人口年均增长率提高1个平分点,利用计算器分别计算20年后,33年后的我国人口数 .
(2)如果年平均增长率保持在2%,利用计算器2020~2100年,每隔5年相应的人口数 .
(3)你看到我国人口数的增长呈现什么趋势?
(4)如何看待计划生育政策?
3.课堂练习
Y=
(1)右图是指数函数① ② ③ ④
——————————————第 9 页 (共 9页)——————————————
的图象,判断与1的大小关系;
(2)设其中>0,≠1,确定为何值时,有:
① ②>
(3)用清水漂洗衣服,若每次能洗去污垢的,写出存留污垢与漂洗次数的函数关系式,若要使存留的污垢,不超过原有的1%,则少要漂洗几次(此题为人教社B版101页第6题).
归纳小结:本节课研究了指数函数性质的应用,关键是要记住>1或0<<时的图象,在此基础上研究其性质 .本节课还涉及到指数型函数的应用,形如(a>0且≠1).
作业:P69 A组第 7 ,8 题 P70 B组 第 1,4题
——————————————第 9 页 (共 9页)——————————————
相关文档
- 高中数学必修3教案:3_3_1几何概型(教2021-06-167页
- 人教A版高中数学选修4-5全册试卷考2021-06-166页
- 高中数学(人教版必修5)配套练习:2-1数2021-06-165页
- 高中数学人教a版选修1-2模块综合测2021-06-1611页
- 高中数学讲义微专题16 含参数函数2021-06-1611页
- 高中数学选修4-4第二讲三直线的参2021-06-1615页
- 高中数学第6章(第1课时)不等式的性质2021-06-166页
- 高中数学复习 数列问题的答题技巧2021-06-163页
- 高中数学选修2-2教学课件4_5_5_2定2021-06-169页
- 高中数学:含绝对值不等式的解法(含2021-06-166页