- 225.71 KB
- 2021-06-16 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
第4讲 直线、平面平行的判定及其性质
一、选择题
1.若直线m⊂平面α,则条件甲:“直线l∥α”是条件乙:“l∥m”的( ).
A.充分不必要条件 B.必要不充分条件
C.充要条件 D.既不充分也不必要条件
答案 D
2.若直线a∥直线b,且a∥平面α,则b与α的位置关系是( )
A.一定平行 B.不平行
C.平行或相交 D.平行或在平面内
解析 直线在平面内的情况不能遗漏,所以正确选项为D.
答案 D
3.一条直线l上有相异三个点A、B、C到平面α的距离相等,那么直线l与平面α的位置关系是 ( ).
A.l∥α B.l⊥α
C.l与α相交但不垂直 D.l∥α或l⊂α
解析 l∥α时,直线l上任意点到α的距离都相等;l⊂α时,直线l上所有的点到α的距离都是0;l⊥α时,直线l上有两个点到α距离相等;l与α斜交时,也只能有两个点到α距离相等.
答案 D
4.设m,n是平面α内的两条不同直线;l1,l2是平面β内的两条相交直线,则α∥β的一个充分而不必要条件是 ( ).
A.m∥β且l1∥α B.m∥l1且n∥l2
C.m∥β且n∥β D.m∥β且n∥l2
解析 对于选项A,不合题意;对于选项B,由于l1与l2是相交直线,而且由l1∥m可得l1∥α,同理可得l2∥α故可得α∥β,充分性成立,而由α∥β不一定能得到l1∥m,它们也可以异面,故必要性不成立,故选B;对于选项C,由于m,n不一定相交,故是必要非充分条件;对于选项D,由n∥l2
可转化为n∥β,同选项C,故不符合题意,综上选B.
答案 B
5.已知α1,α2,α3是三个相互平行的平面,平面α1,α2之间的距离为d1,平面α2,α3之间的距离为d2.直线l与α1,α2,α3分别相交于P1,P2,P3.那么“P1P2=P2P3”是“d1=d2”的 ( ).
A.充分不必要条件 B.必要不充分条件
C.充分必要条件 D.既不充分也不必要条件
解析 如图所示,由于α2∥α3,同时被第三个平面P1P3N所截,故有P2M∥P3N.再根据平行线截线段成比例易知选C.
答案 C
6.下列四个正方体图形中,A、B为正方体的两个顶点,M、N、P分别为其所在棱的中点,能得出AB∥平面MNP的图形的序号是( ).
A.①③ B.②③ C.①④ D.②④
解析 对于图形①:平面MNP与AB所在的对角面平行,即可得到AB∥平面MNP,对于图形④:AB∥PN,即可得到AB∥平面MNP,图形②、③都不可以,故选C.
答案 C
二、填空题
7.过三棱柱ABC-A1B1C1的任意两条棱的中点作直线,其中与平面ABB1A1平行的直线共有________条.
解析 过三棱柱ABC-A1B1C1的任意两条棱的中点作直线,记AC,BC,
A1C1,B1C1的中点分别为E,F,E1,F1,则直线EF,E1F1,EE1,FF1,E1F,EF1均与平面ABB1A1平行,故符合题意的直线共6条.
答案 6
8.α、β、γ是三个平面,a、b是两条直线,有下列三个条件:①a∥γ,b⊂β;②a∥γ,b∥β;③b∥β,a⊂γ.如果命题“α∩β=a,b⊂γ,且________,则a∥b”为真命题,则可以在横线处填入的条件是________(把所有正确的题号填上).
解析 ①中,a∥γ,a⊂β,b⊂β,β∩γ=b⇒a∥b(线面平行的性质).③中,b∥β,b⊂γ,a⊂γ,β∩γ=a⇒a∥b(线面平行的性质).
答案 ①③
9.若m、n为两条不重合的直线,α、β为两个不重合的平面,则下列命题中真命题的序号是________.
①若m、n都平行于平面α,则m、n一定不是相交直线;
②若m、n都垂直于平面α,则m、n一定是平行直线;
③已知α、β互相平行,m、n互相平行,若m∥α,则n∥β;
④若m、n在平面α内的射影互相平行,则m、n互相平行.
解析 ①为假命题,②为真命题,在③中,n可以平行于β,也可以在β内,故是假命题,在④中,m、n也可能异面,故为假命题.
答案 ②
10.对于平面α与平面β,有下列条件:①α、β都垂直于平面γ;②α、β都平行于平面γ;③α内不共线的三点到β的距离相等;④l,m为两条平行直线,且l∥α,m∥β;⑤l,m是异面直线,且l∥α,m∥α;l∥β,m∥β,则可判定平面α与平面β平行的条件是________(填正确结论的序号).
解析 由面面平行的判定定理及性质定理知,只有②⑤能判定α∥β.
答案 ②⑤
三、解答题
11. 如图,在四面体A-BCD中,F、E、H分别是棱AB、BD、AC的中点,G为DE的中点.证明:直线HG∥平面CEF.
证明 法一 如图,连接BH,BH与CF交于K,连接EK.
∵F、H分别是AB、AC的中点,
∴K是△ABC的重心,
∴=.
又据题设条件知,=,
∴=,∴EK∥GH.
∵EK⊂平面CEF,GH⊄平面CEF,
∴直线HG∥平面CEF.
法二 如图,取CD的中点N,连接GN、HN.
∵G为DE的中点,∴GN∥CE.
∵CE⊂平面CEF,GN⊄平面CEF,∴GN∥平面CEF.
连接FH,EN
∵F、E、H分别是棱AB、BD、AC的中点,
∴FH綉BC,EN綉BC,∴FH綉EN,
∴四边形FHNE为平行四边形,∴HN∥EF.
∵EF⊂平面CEF,HN⊄平面CEF,
∴HN∥平面CEF.HN∩GN=N,
∴平面GHN∥平面CEF.
∵GH⊂平面GHN,∴直线HG∥平面CEF.
12. 如图,已知ABCD-A1B1C1D1是棱长为3的正方体,点E在AA1上,点F在CC1上,G在BB1上,且AE=FC1=B1G=1,H是B1C1的中点.
(1)求证:E,B,F,D1四点共面;
(2)求证:平面A1GH∥平面BED1F.
证明 (1)∵AE=B1G=1,∴BG=A1E=2,
∴BG綉A1E,∴A1G綉BE.
又同理,C1F綉B1G,∴四边形C1FGB1是平行四边形,
∴FG綉C1B1綉D1A1,∴四边形A1GFD1是平行四边形.
∴A1G綉D1F,∴D1F綉EB,
故E、B、F、D1四点共面.
(2)∵H是B1C1的中点,∴B1H=.
又B1G=1,∴=.
又=,且∠FCB=∠GB1H=90°,
∴△B1HG∽△CBF,∴∠B1GH=∠CFB=∠FBG,
∴HG∥FB.
又由(1)知A1G∥BE,且HG∩A1G=G,
FB∩BE=B,∴平面A1GH∥平面BED1F.
13.一个多面体的直观图及三视图如图所示:(其中M、N分别是AF、BC的中点).
(1)求证:MN∥平面CDEF;
(2)求多面体A-CDEF的体积.
解 由三视图可知:AB=BC=BF=2,DE=CF=2,∠CBF=.
(1)证明:取BF的中点G,连接MG、NG,由M、N分别为AF、BC的中点可得,NG∥CF,MG∥EF,
∴平面MNG∥平面CDEF,
又MN⊂平面MNG,
∴MN∥平面CDEF.
(2)取DE的中点H.
∵AD=AE,∴AH⊥DE,
在直三棱柱ADE-BCF中,平面ADE⊥平面CDEF,
平面ADE∩平面CDEF=DE.
∴AH⊥平面CDEF.
∴多面体A-CDEF是以AH为高,以矩形CDEF为底面的棱锥,在△ADE中,AH=.S矩形CDEF=DE·EF=4,
∴棱锥A-CDEF的体积为V=·S矩形CDEF·AH=×4×=.
14.如图所示,四边形ABCD为矩形,AD⊥平面ABE,AE=EB=BC,F为CE上的点,且BF⊥平面ACE.
(1)求证:AE⊥BE;
(2)设M在线段AB上,且满足AM=2MB,试在线段CE上确定一点N,使得MN∥平面DAE.
(1)证明 ∵AD⊥平面ABE,AD∥BC,
∴BC⊥平面ABE,
又AE⊂平面ABE,则AE⊥BC.
又∵BF⊥平面ACE,AE⊂平面ABE,
∴AE⊥BF,
又BC∩BF=B,∴AE⊥平面BCE,
又BE⊂平面BCE,∴AE⊥BE.
(2)解 在△ABE中过M点作MG∥AE交BE于G点,在△BEC中过G点作GN∥BC交EC于N点,连接MN,则由比例关系易得CN=CE.
∵MG∥AE,MG⊄平面ADE,AE⊂平面ADE,
∴MG∥平面ADE.
同理,GN∥平面ADE.
又∵GN∩MG=G,∴平面MGN∥平面ADE.
又MN⊂平面MGN,
∴MN∥平面ADE.
∴N点为线段CE上靠近C点的一个三等分点.
相关文档
- 高考数学专题复习练习:第十二章 12_2021-06-1618页
- 高考数学专题复习练习选修4-1 第22021-06-165页
- 高考数学专题复习练习:考点规范练182021-06-166页
- 高考数学专题复习练习:单元质检六B2021-06-165页
- 高考数学专题复习练习:第十章 10_32021-06-1612页
- 高考数学专题复习练习第8讲 函数与2021-06-167页
- 高考数学专题复习练习:第一章 1_2四2021-06-1612页
- 高考数学专题复习练习:单元质检五2021-06-165页
- 高考数学专题复习练习:11-3 专项基2021-06-169页
- 高考数学专题复习练习:第四章 4_3用2021-06-1617页