- 152.50 KB
- 2021-06-16 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
[基础题组练]
1.(2020·马鞍山一模)已知一种元件的使用寿命超过1年的概率为0.8,超过2年的概率为0.6,若一个这种元件使用到1年时还未损坏,则这个元件使用寿命超过2年的概率为( )
A.0.75 B.0.6
C.0.52 D.0.48
解析:选A.设一个这种元件使用到1年时还未损坏为事件A,使用到2年时还未损坏为事件B,则由题意知P(AB)=0.6,P(A)=0.8,则这个元件使用寿命超过2年的概率为P(B|A)===0.75,故选A.
2.设每个工作日甲、乙、丙、丁4人需使用某种设备的概率分别为0.6,0.5,0.5,0.4,各人是否需使用设备相互独立,则同一工作日至少3人需使用设备的概率为( )
A.0.25 B.0.30
C.0.31 D.0.35
解析:选C.设甲、乙、丙、丁需使用设备分别为事件A,B,C,D,则P(A)=0.6,P(B)=P(C)=0.5,P(D)=0.4,恰好3人使用设备的概率
P1=P(BCD+ACD+ABD+ABC)
=(1-0.6)×0.5×0.5×0.4+0.6×(1-0.5)×0.5×0.4+0.6×0.5×(1-0.5)×0.4+0.6×0.5×0.5×(1-0.4)=0.25,
4人使用设备的概率
P2=0.6×0.5×0.5×0.4=0.06,
故所求概率P=0.25+0.06=0.31.
3.某机械研究所对新研发的某批次机械元件进行寿命追踪调查,随机抽查的200个机械元件情况如下:
使用时间/天
10~20
21~30
31~40
41~50
51~60
个数
10
40
80
50
20
若以频率为概率,现从该批次机械元件中随机抽取3个,则至少有2个元件的使用寿命在30天以上的概率为( )
A. B.
C. D.
解析:选D.由表可知元件使用寿命在30天以上的概率为=,则所求概率为C×+=.
4.(2020·河南中原名校联盟一模)市场调查发现,大约的人喜欢在网上购买家用小电器,其余的人则喜欢在实体店购买家用小电器.经工商局抽样调查,发现网上购买的家用小电器的合格率约为,而实体店里的家用小电器的合格率约为.现工商局接到一个关于家用小电器不合格的投诉,则这台被投诉的家用小电器是在网上购买的可能性是( )
A. B.
C. D.
解析:选A.因为大约的人喜欢在网上购买家用小电器,网上购买的家用小电器的合格率约为,所以某家用小电器是在网上购买的,且被投诉的概率约为×=,又实体店里的家用小电器的合格率约为,所以某家用小电器是在实体店里购买的,且被投诉的概率约为×=,故工商局接到一个关于家用小电器不合格的投诉,则这台被投诉的家用小电器是在网上购买的可能性P==.
5.某群体中的每位成员使用移动支付的概率都为p, 各成员的支付方式相互独立.设X为该群体的10位成员中使用移动支付的人数,DX=2.4,P(X=4)<P(X=6),则p=( )
A.0.7 B.0.6
C.0.4 D.0.3
解析:选B.由题意知,该群体的10位成员使用移动支付的概率分布符合二项分布,所以DX=10p·(1-p)=2.4,所以p=0.6或p=0.4.由P(X=4)<P(X=6),得Cp4(1-p)6<Cp6(1-p)4,即(1-p)2<p2,所以p>0.5,所以p=0.6.
6.投篮测试中,每人投3次,至少投中2次才能通过测试.已知某同学每次投篮投中的概率为0.6,且每次投篮是否投中相互独立,则该同学通过测试的概率为________.
解析:该同学通过测试的概率P=C×0.62×0.4+0.63=0.432+0.216=0.648.
答案:0.648
7.小赵、小钱、小孙、小李到4个景点旅游,每人只去一个景点,设事件A为“
4个人去的景点不相同”,事件B为“小赵独自去一个景点”,则P(A|B)=________.
解析:小赵独自去一个景点共有4×3×3×3=108种情况,即n(B)=108,4个人去的景点不同的情况有A=4×3×2×1=24种,即n(AB)=24,所以P(A|B)===.
答案:
8.某次知识竞赛规则如下:在主办方预设的5个问题中,选手若能连续正确回答出两个问题,即停止答题,晋级下一轮.假设某选手正确回答每个问题的概率都是0.8,且每个问题的回答结果相互独立.则该选手恰好回答了4个问题就晋级下一轮的概率为________,该选手回答了5个问题结束的概率为________.
解析:依题意,该选手第2个问题回答错误,第3,4个问题均回答正确,第1个问题回答正误均有可能,则所求概率P=0.8×0.2×0.82+0.2×0.2×0.82=1×0.2×0.82=0.128.
依题意,设答对的事件为A,可分第3个正确与错误两类,若第3个正确则有AA或A两类情况,其概率为:0.8×0.2×0.8×0.2+0.2×0.2×0.8×0.2=0.025 6+0.006 4=0.032 0.该选手第3个问题的回答是错误的,第1,2两个问题回答均错误或有且只有1个错误,则所求概率P=0.23+2×0.2×0.8×0.2=0.008+0.064=0.072.所以,所求概率为0.032 0+0.072=0.104.
答案:0.128 0.104
9.(2020·湖南两市联考)某乒乓球俱乐部派甲、乙、丙三名运动员参加某运动会的个人单打资格选拔赛,本次选拔赛只有出线和未出线两种情况.一个运动员出线记1分,未出线记0分.假设甲、乙、丙出线的概率分别为,,,他们出线与未出线是相互独立的.
(1)求在这次选拔赛中,这三名运动员至少有一名出线的概率;
(2)记在这次选拔赛中,甲、乙、丙三名运动员所得分数之和为随机变量ξ,求随机变量ξ的分布列和数学期望Eξ.
解:(1)记“甲出线”为事件A,“乙出线”为事件B,“丙出线”为事件C,“甲、乙、丙至少有一名出线”为事件D,
则P(D)=1-P()=1-××=.
(2)ξ的所有可能取值为0,1,2,3.
P(ξ=0)=P()=;
P(ξ=1)=P(A)+P(B)+P( C)=;
P(ξ=2)=P(AB)+P(AC)+P(BC)=;
P(ξ=3)=P(ABC)=.
所以ξ的分布列为
ξ
0
1
2
3
P
故Eξ=0×+1×+2×+3×=.
10.(2020·河北“五个一名校联盟”模拟)空气质量指数(Air Quality Index,简称AQI)是定量描述空气质量状况的指数,空气质量按照AQI大小分为六级:0~50为优;51~100为良;101~150为轻度污染;151~200为中度污染;201~300为重度污染;300以上
为严重污染.一环保人士记录去年某地六月10天的AQI的茎叶图如图.
(1)利用该样本估计该地六月空气质量为优良(AQI≤100)的天数;
(2)将频率视为概率,从六月中随机抽取3天,记三天中空气质量为优良的天数为ξ,求ξ的分布列.
解:(1)从茎叶图中可以发现样本中空气质量为优的天数为2,空气质量为良的天数为4,所以该样本中空气质量为优良的频率为=,从而估计该地六月空气质量为优良的天数为30×=18.
(2)由(1)估计某天空气质量为优良的概率为,ξ的所有可能取值为0,1,2,3,且ξ~B.
所以P(ξ=0)==,
P(ξ=1)=C=,
P(ξ=2)=C=,
P(ξ=3)==.
ξ的分布列为
ξ
0
1
2
3
P
[综合题组练]
1.(2020·南昌模拟)为向国际化大都市目标迈进,某市今年新建三大类重点工程,它们分别是30项基础设施类工程、20项民生类工程和10项产业建设类工程.现有3名民工相互独立地从这60个项目中任选一个项目参与建设,则这3名民工选择的项目所属类别互异的概率是( )
A. B.
C. D.
解析:选D.记第i名民工选择的项目属于基础设施类、民生类、产业建设类分别为事件Ai,Bi,Ci,i=1,2,3.由题意,事件Ai,Bi,Ci(i=1,2,3)相互独立,则P(Ai)==,P(Bi)==,P(Ci)==,i=1,2,3,故这3名民工选择的项目所属类别互异的概率是P=AP(AiBiCi)=6×××=.
2.箱子里有5个黑球,4个白球,每次随机取出一个球,若取出黑球,则放回箱中,重新取球;若取出白球,则停止取球,那么在第4次取球之后停止的概率为( )
A. B.×
C.× D.C××
解析:选B.由题意知,第四次取球后停止是当且仅当前三次取的球是黑球,第四次取的球是白球的情况,此事件发生的概率为×.
3.甲罐中有5个红球,2个白球和3个黑球,乙罐中有4个红球,3个白球和3个黑球.先从甲罐中随机取出一球放入乙罐,分别以A1,A2和A3表示由甲罐取出的球是红球,白球和黑球的事件;再从乙罐中随机取出一球,以B表示由乙罐取出的球是红球的事件,则下列结论中正确的是________.(写出所有正确结论的序号)
①P(B)=;
②P(B|A1)=;
③事件B与事件A1相互独立;
④A1,A2,A3是两两互斥的事件;
⑤P(B)的值不能确定,它与A1,A2,A3中哪一个发生都有关.
解析:由题意知A1,A2,A3是两两互斥的事件,
P(A1)==,P(A2)==,P(A3)=,
P(B|A1)==,
P(B|A2)=,P(B|A3)=,
而P(B)=P(A1B)+P(A2B)+P(A3B)
=P(A1)P(B|A1)+P(A2)P(B|A2)+P(A3)P(B|A3)
=×+×+×=.故正确的为②④.
答案:②④
4.已知甲、乙两名跳高运动员一次试跳2米高度成功的概率分别是0.7,0.6,且每次试跳成功与否之间没有影响.
(1)甲、乙两人在第一次试跳中至少有一人成功的概率是________;
(2)若甲、乙各试跳两次,则甲比乙的成功次数多一次的概率是________.
解析:(1)记“甲在第i次试跳成功”为事件Ai,“乙在第i次试跳成功”为事件Bi,“甲、乙两人在第一次试跳中至少有一人成功”为事件C.
法一:P(C)=P(A11)+P(1B1)+P(A1B1)
=P(A1)P(1)+P(1)P(B1)+P(A1)P(B1)
=0.7×0.4+0.3×0.6+0.7×0.6=0.88.
法二:由对立事件的概率计算公式得P(C)=1-P(11)=1-P(1)P(1)=1-0.3×0.4=0.88.
(2)设“甲在两次试跳中成功i次”为事件Mi,“乙在两次试跳中成功i次”为事件Ni,所以所求概率P=P(M1N0)+P(M2N1)=P(M1)P(N0)+P(M2)P(N1)=C×0.7×0.3×0.42+0.72×C×0.6×0.4=0.302 4.
答案:(1)0.88 (2)0.302 4
5.甲、乙两人各射击一次,击中目标的概率分别是和.假设两人射击是否击中目标相互之间没有影响,每人每次射击是否击中目标相互之间也没有影响.
(1)求甲射击4次,至少有1次未击中目标的概率;
(2)求两人各射击4次,甲恰好击中目标2次且乙恰好击中目标3次的概率;
(3)假设每人连续2次未击中目标,则终止其射击.问:乙恰好射击5次后,被终止射击的概率是多少?
解:(1)记“甲连续射击4次,至少有1次未击中目标”为事件A1,则事件A1的对立事件A1为“甲连续射击4次,全部击中目标”.由题意知,射击4次相当于做4次独立重复试验.
故P(1)=C=.
所以P(A1)=1-P(1)=1-=.
所以甲连续射击4次,至少有一次未击中目标的概率为.
(2)记“甲射击4次,恰好有2次击中目标”为事件A2,“乙射击4次,恰好有3次击中目标”为事件B2,
则P(A2)=C××=,
P(B2)=C×=.
由于甲、乙射击相互独立,
故P(A2B2)=P(A2)P(B2)=×=.
所以两人各射击4次,甲恰有2次击中目标且乙恰有3次击中目标的概率为.
(3)记“乙恰好射击5次后,被终止射击”为事件A3,“乙第i次射击未击中“为事件Di(i=1,2,3,4,5),
则A3=D5D43(21∪2D1∪D21),且P(Di)=.
由于各事件相互独立,故
P(A3)=P(D5)P(D4)P(3)P(21+2D1+D21)
=×××=.
所以乙恰好射击5次后被终止射击的概率为.
6.为研究家用轿车在高速公路上的车速情况,交通部门随机选取100名家用轿车驾驶员进行调查,得到其在高速公路上行驶时的平均车速情况为:在55名男性驾驶员中,平均车速超过100 km/h的有40人,不超过100 km/h的有15人;在45名女性驾驶员中,平均车速超过100 km/h的有20人,不超过100 km/h的有25人.
(1)在被调查的驾驶员中,从平均车速不超过100 km/h的人中随机抽取2人,
求这2人恰好有1名男性驾驶员和1名女性驾驶员的概率;
(2)以上述样本数据估计总体,从高速公路上行驶的家用轿车中随机抽取3辆,记这3辆车平均车速超过100 km/h且为男性驾驶员的车辆为X,求X的分布列.
解:(1)平均车速不超过100 km/h的驾驶员有40人,从中随机抽取2人的方法总数为C,记“这2人恰好有1名男性驾驶员和1名女性驾驶员”为事件A,则事件A所包含的基本事件数为CC,所以所求的概率P(A)===.
(2)根据样本估计总体的思想,从总体中任取1辆车,平均车速超过100 km/h且为男性驾驶员的概率为=,
故X~B.
所以P(X=0)=C=,
P(X=1)=C=,
P(X=2)=C=,
P(X=3)=C=.
所以X的分布列为
X
0
1
2
3
P
相关文档
- 2021届浙江新高考数学一轮复习高效2021-06-168页
- 2021届北师大版高考理科数一轮复习2021-06-168页
- 2021届北师大版高考理科数一轮复习2021-06-169页
- 2021届浙江新高考数学一轮复习高效2021-06-166页
- 2021届浙江新高考数学一轮复习高效2021-06-169页
- 2021届浙江新高考数学一轮复习高效2021-06-165页
- 2021届北师大版高考理科数一轮复习2021-06-167页
- 2021届北师大版高考理科数一轮复习2021-06-166页
- 2021届浙江新高考数学一轮复习高效2021-06-166页
- 2021届浙江新高考数学一轮复习高效2021-06-156页