- 72.46 KB
- 2021-06-16 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
第6讲 正弦定理和余弦定理
一、选择题
1.在△ABC中,C=60°,AB=,BC=,那么A等于( ).
A.135° B.105° C.45° D.75°
解析 由正弦定理知=,即=,所以sin A=,又由题知,BC<AB,∴A=45°.
答案 C
2.已知a,b,c是△ABC三边之长,若满足等式(a+b-c)(a+b+c)=ab,则角C的大小为( ).
A.60° B.90° C.120° D.150°
解析 由(a+b-c)(a+b+c)=ab,得(a+b)2-c2=ab,
∴c2=a2+b2+ab=a2+b2-2abcos C,
∴cos C=-,∴C=120°.
答案 C
3.在△ABC中,角A,B,C所对应的边分别为a,b,c,若角A,B,C依次成等差数列,且a=1,b=,则S△ABC= ( ).
A. B. C. D.2
解析 ∵A,B,C成等差数列,∴A+C=2B,∴B=60°.
又a=1,b=,∴=,
∴sin A==×=,
∴A=30°,∴C=90°.∴S△ABC=×1×=.
答案 C
4.在△ABC中,AC=,BC=2,B=60°,则BC边上的高等于 ( ).
A. B. C. D.
解析 设AB=c,BC边上的高为h.
由余弦定理,得AC2=c2+BC2-2BC·ccos 60°,即7=c2+4-4ccos 60°,即
c2-2c-3=0,∴c=3(负值舍去).
又h=c·sin 60°=3×=,故选B.
答案 B
5.在△ABC中,角A、B、C的对边分别为a、b、c,且a=λ,b=λ(λ>0),A=45°,则满足此条件的三角形个数是( )
A.0 B.1
C.2 D.无数个
解析 直接根据正弦定理可得=,可得sin B===>1,没有意义,故满足条件的三角形的个数为0.
答案 A
6.已知△ABC的面积为,AC=,∠ABC=,则△ABC的周长等于 ( ).
A.3+ B.3
C.2+ D.
解析 由余弦定理得b2=a2+c2-2accos B,即a2+c2-ac=3.又△ABC的面积为acsin =,即ac=2,所以a2+c2+2ac=9,所以a+c=3,即a+c+b=3+,故选A.
答案 A
二、填空题
7.如图,△ABC中,AB=AC=2,BC=2,点D在BC边上,∠ADC=45°,则AD的长度等于________.
解析 在△ABC中,∵AB=AC=2,BC=2,∴cos C=,∴sin C=;在△ADC中,由正弦定理得,=, ∴AD=×=.
答案
8.已知△ABC的三边长成公比为的等比数列,则其最大角的余弦值为________.
解析 依题意得,△ABC的三边长分别为a,a,2a(a>0),则最大边2a所对的角的余弦值为:=-.
答案 -
9.在Rt△ABC中,C=90°,且A,B,C所对的边a,b,c满足a+b=cx,则实数x的取值范围是________.
解析 x===sin A+cos A=sin.又A∈,∴
相关文档
- 高考数学专题复习练习:第十二章 12_2021-06-1616页
- 高考数学专题复习练习:第十一章 11_2021-06-1613页
- 高考数学专题复习练习:考点规范练562021-06-165页
- 高考数学专题复习练习:滚动测试卷四2021-06-1612页
- 高考数学专题复习练习:考点规范练102021-06-165页
- 高考数学专题复习练习第6讲 幂函数2021-06-166页
- 高考数学专题复习练习第7讲 立体2021-06-167页
- 高考数学专题复习练习第十一章 第2021-06-165页
- 高考数学专题复习练习:考点规范练202021-06-169页
- 高考数学专题复习练习:高考大题专项2021-06-167页