- 145.50 KB
- 2021-06-16 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
课题:§2.2.2对数函数(二)
教学任务:(1)进一步理解对数函数的图象和性质;
(2)熟练应用对数函数的图象和性质,解决一些综合问题;
(3)通过例题和练习的讲解与演练,培养学生分析问题和解决问题的能力.
教学重点:对数函数的图象和性质.
教学难点:对对数函数的性质的综合运用.
教学过程:
一、 回顾与总结
1. 函数的图象如图所示,回答下列问题.
(1)说明哪个函数对应于哪个图象,并解释为什么?
(2)函数与
且有什么关系?图象之间 又有什么特殊的关系?
(3)以的图象为基础,在同一坐标系中画出的图象.
1
2
3
4
(4)已知函数的图象,则底数之间的关系:
.
教
第 3 页 共 3 页
完成下表(对数函数且的图象和性质)
图
象
定义域
值域
性
质
1. 根据对数函数的图象和性质填空.
已知函数,则当时, ;当时, ;当时, ;当时, .
已知函数,则当时, ;当时, ;当时, ;当时, ;当时, .
一、 应用举例
例1. 比较大小: ,且;
,.
解:(略)
例2.已知恒为正数,求的取值范围.
解:(略)
[总结点评]:(由学生独立思考,师生共同归纳概括).
.
第 3 页 共 3 页
例3.求函数的定义域及值域.
解:(略)
注意:函数值域的求法.
例4.(1)函数在[2,4]上的最大值比最小值大1,求的值;
(2)求函数的最小值.
解:(略)
注意:利用函数单调性求函数最值的方法,复合函数最值的求法.
例5.(2003年上海高考题)已知函数,求函数的定义域,并讨论它的奇偶性和单调性.
解:(略)
注意:判断函数奇偶性和单调性的方法,规范判断函数奇偶性和单调性的步骤.
例6.求函数的单调区间.
解:(略)
注意:复合函数单调性的求法及规律:“同增异减”.
练习:求函数的单调区间.
一、 作业布置
考试卷一套
第 3 页 共 3 页
相关文档
- 高中数学第一讲坐标系三简单曲线的2021-06-166页
- 2020_2021学年新教材高中数学第六2021-06-1628页
- 2020_2021学年高中数学第三章不等2021-06-1624页
- 高中数学人教a必修5学业分层测评132021-06-165页
- 高中数学北师大版新教材必修一同步2021-06-1631页
- 高中数学人教a版选修1-1第三章导数2021-06-168页
- 高中数学人教a版选修1-2学业分层测2021-06-169页
- 2020秋新教材高中数学第一章集合与2021-06-1625页
- 2020_2021学年高中数学第三章不等2021-06-1645页
- 高中数学必背公式——立体几何与空2021-06-166页