• 579.00 KB
  • 2021-06-16 发布

高考数学一轮复习核心素养测评五十七10-8-3圆锥曲线的范围问题文含解析北师大版

  • 3页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
核心素养测评五十七 圆锥曲线的范围问题 ‎1.已知抛物线C:x2=2py(p>0)上一点M(m,9)到其焦点F的距离为10. 世纪金榜导学号 ‎(1)求抛物线C的方程.‎ ‎(2)设过焦点F的直线l与抛物线C交于A,B两点,且抛物线在A,B两点处的切线分别交x轴于P,Q两点,求|AP|·|BQ|的取值范围.‎ ‎【解析】(1)已知M(m,9)到焦点F的距离为10,则点M到准线的距离为10.‎ 因为抛物线的准线为y=-,所以9+=10,‎ 解得p=2,所以抛物线的方程为x2=4y.‎ ‎(2)由已知可判断直线l的斜率存在,设斜率为k,‎ 因为F(0,1),则l:y=kx+1.‎ 设A,B,由消去y得,x2-4kx-4=0,所以x1+x2=4k,x1x2=-4.‎ 由于抛物线C也是函数y=x2的图像,且y′=x,则PA:y-=x1(x-x1).‎ 令y=0,解得x=x1,所以P,‎ 从而|AP|=.‎ 同理可得|BQ|=,‎ 所以|AP|·|BQ|=‎ ‎=‎ ‎=2.因为k2≥0,所以|AP|·|BQ|的取值范围为[2,+∞).‎ - 3 -‎ ‎2.已知椭圆C1,抛物线C2的焦点均在x轴上,C1的中心和C2的顶点均为原点O,从每条曲线上各取两个点,其坐标分别是(3,-2),(-2,0),(4,-4),.‎ ‎(1)求C1,C2的标准方程.‎ ‎(2)过点M(0,2)的直线l与椭圆C1交于不同的两点A,B,且∠AOB为钝角(其中O为坐标原点),求直线l的斜率k的取值范围.‎ ‎【解析】(1)由题意,抛物线的顶点为原点,设椭圆方程为+=1(a>b>0),‎ 所以点(-2,0)一定在椭圆上,且a=2,则椭圆上任何点的横坐标的绝对值都小于等于2,‎ 所以也在椭圆上,+=1,b2=1,故椭圆标准方程为+y2=1,‎ 所以点(3,-2)、(4,-4)在抛物线上,且抛物线开口向右,设其方程为y2=2px(p>0),12=6p,p=2,‎ 所以方程为y2=4x.‎ ‎(2)①当直线l斜率不存在时,易知A,O,B三点共线,不符合题意.‎ ‎②当l斜率存在时,设l:y=kx+2,A(x1,x2),B(x2,y2),x2+4(kx+2)2-4=0,‎ ‎(4k2+1)x2+16kx+12=0,‎ 令Δ=(16k)2-48(4k2+1)>0,‎ ‎256k2-192k2-48>0,64k2>48,k<-或k>,‎ ‎=(x1,y1),=(x2,y2),x1+x2=,x1x2=,‎ y1y2=(kx1+2)(kx2+2)‎ ‎=k2x1x2+2k(x1+x2)+4‎ ‎=-+=,‎ - 3 -‎ 令·=x1x2+y1y2=<0,‎ 即4k2>16,k<-2或k>2.‎ 综上:k<-2或k>2.‎ - 3 -‎