• 333.00 KB
  • 2021-06-16 发布

2021届高考数学一轮复习新人教A版教学案:第二章函数概念及基本初等函数Ⅰ第9节函数模型及其应用

  • 16页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
www.ks5u.com 第9节 函数模型及其应用 考试要求 1.了解指数函数、对数函数、幂函数的增长特征,结合具体实例体会直线上升、指数增长、对数增长等不同函数类型增长的含义;2.了解函数模型(如指数函数、对数函数、幂函数、分段函数等在社会生活中普遍使用的函数模型)的广泛应用.‎ 知 识 梳 理 ‎1.指数、对数、幂函数模型性质比较 ‎  函数 性质   ‎ y=ax ‎(a>1)‎ y=logax ‎(a>1)‎ y=xn ‎(n>0)‎ 在(0,+∞)‎ 上的增减性 单调递增 单调递增 单调递增 增长速度 越来越快 越来越慢 相对平稳 图象的变化 随x的增大逐渐表现为与y轴平行 随x的增大逐渐表现为与x轴平行 随n值变化 而各有不同 ‎2.几种常见的函数模型 函数模型 函数解析式 一次函数模型 f(x)=ax+b(a、b为常数,a≠0)‎ 二次函数模型 f(x)=ax2+bx+c(a,b,c为常数,a≠0)‎ 与指数函数 相关的模型 f(x)=bax+c(a,b,c为常数,a>0且a≠1,b≠0)‎ 与对数函数 相关的模型 f(x)=blogax+c(a,b,c为常数,a>0且a≠1,b≠0)‎ 与幂函数 相关的模型 f(x)=axn+b(a,b,n为常数,a≠0)‎ ‎[常用结论与微点提醒]‎ ‎1.“直线上升”是匀速增长,其增长量固定不变;“指数增长”先慢后快,其增长量成倍增加,常用“指数爆炸”来形容;“对数增长”先快后慢,其增长量越来越小.‎ ‎2.充分理解题意,并熟练掌握几种常见函数的图象和性质是解题的关键.‎ ‎3.易忽视实际问题中自变量的取值范围,需合理确定函数的定义域,必须验证数学结果对实际问题的合理性.‎ 诊 断 自 测 ‎1.判断下列结论正误(在括号内打“√”或“×”)‎ ‎(1)某种商品进价为每件100元,按进价增加10%出售,后因库存积压降价,若按九折出售,则每件还能获利.(  )‎ ‎(2)函数y=2x的函数值比y=x2的函数值大.(  )‎ ‎(3)不存在x0,使ax01)的增长速度会超过并远远大于y=xa(a>0)的增长速度.(  )‎ 解析 (1)9折出售的售价为100(1+10%)×=99(元).‎ ‎∴每件赔1元,(1)错.‎ ‎(2)中,当x=2时,2x=x2=4.不正确.‎ ‎(3)中,如a=x0=,n=,不等式成立,因此(3)错.‎ 答案 (1)× (2)× (3)× (4)√‎ ‎2.(老教材必修1P107A1改编)在某个物理实验中,测得变量x和变量y的几组数据,如下表:‎ x ‎0.50‎ ‎0.99‎ ‎2.01‎ ‎3.98‎ y ‎-0.99‎ ‎0.01‎ ‎0.98‎ ‎2.00‎ 则对x,y最适合的拟合函数是(  )‎ A.y=2x B.y=x2-1‎ C.y=2x-2 D.y=log2x 解析 根据x=0.50,y=-0.99,代入计算,可以排除A;根据x=2.01,y=0.98,代入计算,可以排除B,C;将各数据代入函数y=log2x,可知满足题意.‎ 答案 D ‎3.(新教材必修第一册P149例4改编)当生物死亡后,其体内原有的碳14的含量大约每经过 ‎5 730年衰减为原来的一半,这个时间称为“半衰期”.当死亡生物体内的碳14含量不足死亡前的千分之一时,用一般的放射性探测器就测不到了.若某死亡生物体内的碳14用该放射性探测器探测不到,则它经过的“半衰期”个数至少是(  )‎ A.8 B.9 C.10 D.11‎ 解析 设该死亡生物体内原有的碳14的含量为1,则经过n个“半衰期”后的含量为,由<,得n≥10.‎ 所以,若某死亡生物体内的碳14用该放射性探测器探测不到,则它至少需要经过10个“半衰期”.‎ 答案 C ‎4.(2020·西安一中月考)已知f(x)=x2,g(x)=2x,h(x)=log2x,当x∈(4,+∞)时,对三个函数的增长速度进行比较,下列选项中正确的是(  )‎ A.f(x)>g(x)>h(x) B.g(x)>f(x)>h(x)‎ C.g(x)>h(x)>f(x) D.f(x)>h(x)>g(x)‎ 解析 在同一坐标系内,根据函数图象变化趋势,当x∈(4,+∞)时,增长速度大小排列为g(x)>f(x)>h(x).‎ 答案 B ‎5.(多填题)(2018·浙江卷)我国古代数学著作《张邱建算经》中记载百鸡问题:“今有鸡翁一,值钱五;鸡母一,值钱三;鸡雏三,值钱一.凡百钱,买鸡百只,问鸡翁、母、雏各几何?”设鸡翁、鸡母、鸡雏个数分别为x,y,z,则当z=81时,x=________,y=________.‎ 解析 把z=81代入方程组,化简得 解得x=8,y=11.‎ 答案 8 11‎ ‎6.(多填题)(2019·北京卷)李明自主创业,在网上经营一家水果店,销售的水果中有草莓、京白梨、西瓜、桃,价格依次为60元/盒、65元/盒、80元/盒、90元/盒.为增加销量,李明对这四种水果进行促销:一次购买水果的总价达到120元,顾客就少付x元.每笔订单顾客网上支付成功后,李明会得到支付款的80%.‎ ‎(1)当x=10时,顾客一次购买草莓和西瓜各1盒,需要支付________元;‎ ‎(2)在促销活动中,为保证李明每笔订单得到的金额均不低于促销前总价的七折,则x的最大值为________.‎ 解析 (1)顾客一次购买草莓和西瓜各1盒,原价应为60+80=140(元),超过了120元可以优惠,所以当x=10时,顾客需要支付140-10=130(元).(2)由题意知,当x确定后,顾客可以得到的优惠金额是固定的,所以顾客支付的金额越少,优惠的比例越大.而顾客要想得到优惠,最少要一次购买2盒草莓,此时顾客支付的金额为(120-x)元,所以(120-x)×80%≥120×0.7,所以x≤15.即x的最大值为15.‎ 答案 (1)130 (2)15‎ 考点一 利用函数的图象刻画实际问题 ‎【例1】 (2017·全国Ⅲ卷)某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.‎ 根据该折线图,下列结论错误的是(  )‎ A.月接待游客量逐月增加 B.年接待游客量逐年增加 C.各年的月接待游客量高峰期大致在7,8月 D.各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳 解析 由题图可知,2014年8月到9月的月接待游客量在减少,则A选项错误.‎ 答案 A 规律方法 1.当根据题意不易建立函数模型时,则根据实际问题中两变量的变化快慢等特点,结合图象的变化趋势,验证是否吻合,从中排除不符合实际的情况,选出符合实际情况的答案.‎ ‎2.图形、表格能直观刻画两变量间的依存关系,考查了数学直观想象核心素养.‎ ‎【训练1】 高为H,满缸水量为V 的鱼缸的轴截面如图所示,其底部破了一个小洞,满缸水从洞中流出,若鱼缸水深为h时水的体积为v,则函数v=f(h)的大致图象是(  )‎ 解析 由题意知,水深h越大,水的体积v就越大.‎ 当h=0时,v=0,故可排除A,C;‎ 当h∈[0,H]时,不妨将水“流出”设想为“流入”.‎ 每当h增加一个单位增量Δh时,根据鱼缸形状可知,函数v的变化,开始其增量越来越大,经过中截面后增量越来越小,故v=f(h)的图象是先凹后凸的,故选B.‎ 答案 B 考点二 已知函数模型求解实际问题 ‎【例2】 为了降低能源损耗,某体育馆的外墙需要建造隔热层,体育馆要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元.该建筑物每年的能源消耗费用C(单位:万元)与隔热层厚度x(单位:cm)满足关系:C(x)=(0≤x≤10,k为常数),若不建隔热层,每年能源消耗费用为8万元,设f(x)为隔热层建造费用与20年的能源消耗费用之和.‎ ‎(1)求k的值及f(x)的表达式;‎ ‎(2)隔热层修建多厚时,总费用f(x)达到最小?并求最小值.‎ 解 (1)当x=0时,C=8,∴k=40,‎ ‎∴C(x)=(0≤x≤10),‎ ‎∴f(x)=6x+=6x+(0≤x≤10).‎ ‎(2)由(1)得f(x)=2(3x+5)+-10.‎ 令3x+5=t,t∈[5,35],‎ 则y=2t+-10≥2-10=70(当且仅当2t=,即t=20时等号成立),‎ 此时x=5,因此f(x)的最小值为70.‎ ‎∴隔热层修建5 cm厚时,总费用f(x)达到最小,最小值为70万元.‎ 规律方法 1.求解已知函数模型解决实际问题的关注点.‎ ‎(1)认清所给函数模型,弄清哪些量为待定系数.‎ ‎(2)根据已知利用待定系数法,确定模型中的待定系数.‎ ‎2.利用该函数模型,借助函数的性质、导数等求解实际问题,并进行检验.‎ ‎【训练2】 (2019·全国Ⅱ卷)2019年1月3日嫦娥四号探测器成功实现人类历史上首次月球背面软着陆,我国航天事业取得又一重大成就.实现月球背面软着陆需要解决的一个关键技术问题是地面与探测器的通信联系.为解决这个问题,发射了嫦娥四号中继星“鹊桥”,鹊桥沿着围绕地月拉格朗日L2点的轨道运行.L2点是平衡点,位于地月连线的延长线上.设地球质量为M1,月球质量为M2,地月距离为R,L2点到月球的距离为r,根据牛顿运动定律和万有引力定律,r满足方程:‎ +=(R+r).‎ 设α=.由于α的值很小,因此在近似计算中≈3α3,则r的近似值为(  )‎ A.R B.R C.R D.R 解析 由α=,得r=αR,‎ 代入+=(R+r),‎ 整理得=.‎ 又≈3α3,即3α3≈,所以α≈,‎ 故r=αR≈R.‎ 答案 D 考点三 构建函数模型的实际问题多维探究 角度1 构建二次函数、分段函数模型 ‎【例3-1】 (2020·济南一中月考)响应国家提出的“大众创业,万众创新”的号召,小王大学毕业后决定利用所学专业进行自主创业.经过市场调研,生产某小型电子产品需投入年固定成本2万元,每生产x万件,需另投入流动成本W(x)万元,在年产量不足8万件时,W(x)=x2+2x.在年产量不小于8万件时,W(x)=7x+-37.每件产品售价6元.通过市场分析,小王生产的商品能当年全部售完.‎ ‎(1)写出年利润P(x)(万元)关于年产量x ‎(万件)的函数解析式;(注:年利润=年销售收入-固定成本-流动成本)‎ ‎(2)年产量为多少万件时,小王在这一商品的生产中所获利润最大?最大利润是多少?‎ 解 (1)因为每件商品售价为6元,则x万件商品销售收入为6x万元.依题意得 当0200.‎ 两边取对数,得n·lg1.12>lg 2-lg 1.3,‎ 所以n>≈=,‎ 又n∈N*,所以n≥4,‎ 所以从2023年开始,该公司投入的研发资金开始超过200万元.‎ 答案 (1)C (2)③ (3)D A级 基础巩固 一、选择题 ‎1.一根蜡烛长20 cm,点燃后每小时燃烧5 cm,燃烧时剩下的高度h(cm)与燃烧时间t(小时)的函数关系用图象表示为(  )‎ 解析 由题意得关系式为h=20-5t(0≤t≤4).图象应为B项.‎ 答案 B ‎2.根据有关资料,围棋状态空间复杂度的上限M约为3361,而可观测宇宙中普通物质的原子总数N约为1080.则下列各数中与最接近的是(  )‎ ‎(参考数据:lg 3≈0.48)‎ A.1033 B.1053 C.1073 D.1093‎ 解析 由题意,lg =lg =lg 3361-lg 1080‎ ‎=361lg 3-80lg 10≈93.‎ 所以≈1093,故与最接近的是1093.‎ 答案 D ‎3.汽车的“燃油效率”是指汽车每消耗1 L汽油行驶的里程,如图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率情况.下列斜述中正确的是(  )‎ A.消耗1 L汽油,乙车最多可行驶5 km B.以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多 C.甲车以80 km/h的速度行驶1小时,消耗10 L汽油 D.某城市机动车最高限速80 km/h,相同条件下,在该市用丙车比用乙车更省油 解析 对于A,消耗1 L汽油,乙车行驶的最大距离大于5 km,故A错;对于B,以相同速度行驶时,甲车燃油效率最高,因此以相同速度行驶相同路程时,甲车消耗汽油最少,故B错;对于C,甲车以80 km/h行驶1小时,里程为80 km,燃油效率为10 km/L,消耗8 L汽油,故C错;对于D,因为在速度低于80 km/h时,丙车的燃油效率高于乙车,故D正确.‎ 答案 D ‎4.(2020·武汉模拟)复利是一种计算利息的方法,即把前一期的利息和本金加在一起算作本金,再计算下一期的利息.某同学有压岁钱1 000元,存入银行,年利率为2.25%,若放入微信零钱通或者支付宝的余额宝,年利率可达4.01%.如果将这1 000元选择合适方式存满5年,可以多获利息(  )‎ ‎(参考数据:1.022 54≈1.093,1.022 55≈1.118,1.040 15≈1.217)‎ A.176元 B.99元 C.77元 D.88元 解析 将1 000元钱存入微信零钱通或者支付宝的余额宝,选择复利的计算方法,则存满5年后的本息和为1 000×(1+4.01%)5≈1 217(元),故共得利息1 217-1 000=217(元).将1 000元存入银行,则存满5年后的本息和为1 000×(1+2.25%)5≈1 118(元),即获利息1 118-1 000=118(元).故可以多获利息217-118=99(元).‎ 答案 B ‎5.我们处在一个有声世界里,不同场合,人们对声音的音量会有不同要求.音量大小的单位是分贝(dB),对于一个强度为I的声波,其音量的大小η可由如下公式计算:η=10lg(其中I0是人耳能听到声音的最低声波强度),则70 dB的声音的声波强度I1是60 dB的声音的声波强度I2的(  )‎ A.倍 B.10倍 C.10倍 D.ln倍 解析 由η=10lg 得I=I010,所以I1=I0107,I2=I0106,所以=10,所以70 dB的声音的声波强度I1是60 dB的声音的声波强度I2的10倍.‎ 答案 C 二、填空题 ‎6.某公司一年购买某种货物600吨,每次购买x吨,运费为6万元/次,一年的总存储费用为4x万元.要使一年的总运费与总存储费用之和最小,则x的值是________.‎ 解析 一年的总运费与总存储费用之和为y=6×+4x=+4x≥2=240,当且仅当=4x,即x=30时,y有最小值240.‎ 答案 30‎ ‎7.“好酒也怕巷子深”,许多著名品牌是通过广告宣传进入消费者视线的.已知某品牌商品广告销售的收入R与广告费A之间满足关系R=a(a为常数),广告效应为D=a-A.那么精明的商人为了取得最大的广告效应,投入的广告费应为________(用常数a表示).‎ 解析 令t=(t≥0),则A=t2,‎ ‎∴D=at-t2=-+a2,‎ ‎∴当t=a,即A=a2时,D取得最大值.‎ 答案 a2‎ ‎8.一个容器装有细沙a cm3,细沙从容器底下一个细微的小孔慢慢地匀速漏出,t min后剩余的细沙量为y=ae-bt(cm3),经过8 min后发现容器内还有一半的沙子,则再经过________min,容器中的沙子只有开始时的八分之一.‎ 解析 当t=8时,y=ae-8b=a,所以e-8b=.‎ 容器中的沙子只有开始时的八分之一时,即y=ae-bt=a,e-bt==(e-8b)3=e-24b,则t=24.‎ 所以再经过16 min容器中的沙子只有开始时的八分之一.‎ 答案 16‎ 三、解答题 ‎9.候鸟每年都要随季节的变化而进行大规模的迁徙,研究某种鸟类的专家发现,该种鸟类的飞行速度v(单位:m/s)与其耗氧量Q之间的关系为v=a+blog3(其中a,b是实数).据统计,该种鸟类在静止时其耗氧量为30个单位,而其耗氧量为90个单位时,其飞行速度为1 m/s.‎ ‎(1)求出a,b的值;‎ ‎(2)若这种鸟类为赶路程,飞行的速度不能低于2 m/s,则其耗氧量至少要多少个单位?‎ 解 (1)由题意可知,当这种鸟类静止时,它的速度为0 m/s,此时耗氧量为30个单位,‎ 故有a+blog3=0,即a+b=0.‎ 当耗氧量为90个单位时,速度为1 m/s,‎ 故有a+blog3=1,即a+2b=1.‎ 解方程组得 ‎(2)由(1)知,v=-1+log3.‎ 所以要使飞行速度不低于2 m/s,则有v≥2,‎ 即-1+log3≥2,解得Q≥270.‎ 所以若这种鸟类为赶路程,飞行的速度不能低于2 m/s时,其耗氧量至少要270个单位.‎ ‎10.某医药机构测定,某种药品服用后每毫升血液中的含药量y(微克)与时间t(小时)之间近似满足如图所示的曲线.‎ ‎(1)写出服用药品后y与t之间的函数关系式;‎ ‎(2)据进一步测定,每毫升血液中含药量不少于0.50微克时治疗有效,求服用药品后的有效时间.‎ 解 (1)由题中图象,设y= 当t=1时,由y=4,得k=4;‎ 当=4,得a=3.所以y= ‎(2)由y≥0.50,得或 解得≤t≤4,因此服用药品后的有效时间为4-=(小时).‎ B级 能力提升 ‎11.将甲桶中的a L水缓慢注入空桶乙中,t min后甲桶中剩余的水量符合指数衰减曲线y=aent.假设过5 min后甲桶和乙桶的水量相等,若再过m min甲桶中的水只有 L,则m的值为(  )‎ A.5 B.8 C.9 D.10‎ 解析 ∵5 min后甲桶和乙桶的水量相等,‎ ‎∴函数y=f(t)=aent满足f(5)=ae5n=a,‎ 可得n=ln ,∴f(t)=a·,‎ 因此,当k min后甲桶中的水只有 L时,‎ f(k)=a·=a,即=,‎ ‎∴k=10,由题可知m=k-5=5.‎ 答案 A ‎12.某位股民购进某支股票,在接下来的交易时间内,他的这支股票先经历了n次涨停(每次上涨10%),又经历了n次跌停(每次下跌10%),则该股民这支股票的盈亏情况(不考虑其他费用)为(  )‎ A.略有盈利 B.略有亏损 C.没有盈利也没有亏损 D.无法判断盈亏情况 解析 设该股民购这支股票的价格为a元,则经历n次涨停后的价格为a(1+10%)n=a×1.1n元,经历n次跌停后的价格为a×1.1n×(1-10%)n=a×1.1n×0.9n=a×(1.1×0.9)n=0.99n·a<a,故该股民这支股票略有亏损.‎ 答案 B ‎13.物体在常温下的温度变化可以用牛顿冷却规律来描述:设物体的初始温度是T0,经过一定时间t(单位:min)后的温度是T,则T-Ta=(T0-Ta),其中Ta称为环境温度,h称为半衰期.现有一杯用85 ℃热水冲的速溶咖啡,放在21 ℃的房间中,如果咖啡降到37 ℃需要16 min,那么这杯咖啡要从37 ℃降到29 ℃,还需要________ min.‎ 解析 由题意知Ta=21 ℃.‎ 令T0=85 ℃,T=37 ℃,‎ 得37-21=(85-21)·,解得h=8.‎ 令T0=37 ℃,T=29 ℃,‎ 则29-21=(37-21)·,解得t=8.‎ 答案 8‎ ‎14.(2020·佛山一中月考)近年来,“共享单车”的出现为市民“绿色出行”提供了极大的方便,某共享单车公司计划在甲、乙两座城市共投资240万元.根据行业规定,每个城市至少要投资80万元,由前期市场调研可知:甲城市收益P与投入a(单位:万元)满足P=4-6,乙城市收益Q与投入a(单位:万元)满足Q=设甲城市的投入为x(单位:万元),两个城市的总收益为f(x)(单位:万元).‎ ‎(1)当投资甲城市128万元时,求此时公司的总收益;‎ ‎(2)试问:如何安排甲、乙两个城市的投资,才能使公司总收益最大?‎ 解 (1)当x=128,即甲城市投资128万元时,乙城市投资112万元,‎ 所以f(128)=4×-6+×112+2=88(万元).‎ 因此,此时公司的总收益为88万元.‎ ‎(2)由题意知,甲城市投资x万元,则乙城市投资(240-x)万元,‎ 依题意得解得80≤x≤160,‎ 当80≤x<120,即120<240-x≤160时,‎ f(x)=4-6+32=4+26<26+16.‎ 当120≤x≤160,即80≤240-x≤120时,‎ f(x)=4-6+(240-x)+2‎ ‎=-x+4+56.‎ 令t=,则t∈[2,4],‎ 所以y=-t2+4t+56=-(t-8)2+88.‎ 当t=8,即x=128时,y取最大值88.‎ 因为88-(26+16)=2×(31-8)>0,‎ 故f(x)的最大值为88.‎ 因此,当甲城市投资128万元,乙城市投资112万元时,总收益最大,且最大收益为88万元.‎ C级 创新猜想 ‎15.(多选题)(2020·济南月考)甲、乙、丙、丁四个物体同时从某一点出发向同一方向运动,它们的路程fi(x)(i=1,2,3,4)关于时间x(x≥0)的函数关系式分别为f1(x)=2x-1,f2(x)=x2,f3(x)=x,f4(x)=log2(x+1),则下列结论正确的是(  )‎ A.当x>1时,甲走在最前面 B.当x>1时,乙走在最前面 C.当01时,丁走在最后面 D.如果它们一直运动下去,最终走在最前面的是甲 解析 甲、乙、丙、丁的路程fi(x)(i=1,2,3,4)关于时间x(x≥0)的函数关系式分别为f1(x)=2x-1,f2(x)=x2,f3(x)=x,f4(x)=log2(x+1),它们对应的函数模型分别为指数型函数模型、二次函数模型、一次函数模型、对数型函数模型.‎ 当x=2时,f1(2)=3,f2(2)=4,所以A不正确;‎ 当x=5时,f1(5)=31,f2(5)=25,所以B不正确;‎ 根据四种函数的变化特点,对数型函数的增长速度是先快后慢,又当x=1时,甲、乙、丙、丁四个物体走过的路程相等,从而可知,当01时,丁走在最后面,所以C正确;‎ 指数型函数的增长速度是先慢后快,当运动的时间足够长时,最前面的物体一定是按照指数型函数模型运动的物体,即一定是甲物体,所以D正确.‎ 答案 CD