• 6.67 MB
  • 2021-06-16 发布

北师版高中数学必修一第3讲:函数的相关概念与映射(教师版)

  • 8页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
1 函数的相关概念与映射 __________________________________________________________________________________ __________________________________________________________________________________ 1、 通过丰富实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型; 2、 学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用; 3、 了解构成函数的要素,会求一些简单函数的定义域和值域. 一、映射的概念: 设 A 、 B 是两个非空的集合,如果按某个确定的对应关系 f ,对于集合 A 中的任意一个元素, 在集合 B 中都有唯一确定的元素和它对应,那么这样的对应(包括集合 A 、 B ,以及对应关系 f ) 叫做集合 A 到集合 B 的映射,记作: :f A B 。 二、像与原像的概念: 给定一个集合 A 到集合 B 的映射,且 ,a A b B  ,如果元素 a 和元素 b 对应,那么我们把元素 b 叫做元素 a 的像,元素 a 叫做元素 b 的原像。 特别提醒:1、对于映射 :f A → B 来说,则应注意理解以下四点: (1)集合 A 中每一个元素,在集合 B 中必有唯一的象;(2)集合 A 中不同元素,在集合 B 中可 以有相同的象;(3)集合 A 中的元素与集合 B 中的元素的对应关系,可以是:“一对一”、“多对一”, 但不能是“一对多”。(4)允许集合 B 中的元素没有象; 2、集合 A 、 B 及对应法则 f 是确定的,是一个系统; 3、对应法则 f 有“方向性”。即强调从集合 A 到集合 B 的对应,它与从 B 到 A 的对应关系一般 是不同的; 三、映射: 一般地,设 A ,B 是两个非空的集合, :f A → B 是集合 A 到集合 B 的映射,如果在这个映射 下,对于集合 A 中的不同的元素,在集合 B 中有不同的象,而且 B 中每一个元素都有原象,那么这 个映射叫做 A 到 B 的一一映射。 2 特别提醒:对一一映射概念的理解应注意以下两点:(1)集合 B 中的每一个元素都有原象,也 就是说,集合 B 中不允许有剩余的元素。(2)对于集合 A 中的不同元素,在集合 B 中有不同的象, 也就是说,不允许“多对一”; 四、函数的概念 : 设 A 、B 是两个非空的数集,如果按某一个确定的对应关系 f ,使对于集合 A 中的任意一个数 x , 在集合 B 中都有唯一确定的数  f x 和它对应,那么就称 :f A B 为从集合 A 到集合 B 的一个函 数,记作  ,y f x x A  。其中 x 叫自变量,x 的取值范围 A 叫做函数 )(xfy  的定义域;与 x 的 值相对应的 y 的值叫做函数值,函数值的集合 Axxf |)( 叫做函数 )(xfy  的值域。 特别提醒:1、函数实际上就是集合 A 到集合 B 的一个特殊映射 ,其特殊处主要在于集合 A , B 为非空的数集;其中定义域 A ,就是指原象的集合,值域 Axxf |)( ,就是象的集合。2、函 数符号 )(xfy  表示“ y 是 x 的函数”,应理解为:(1)x 是自变量,它是关系所施加的对象; f 是 对应关系,它可以是一个或几个解析式,可以是图像、表格,也可以是文字描述;(2)符号  y f x 仅仅是函数符号,不是表示“ y 等于 f 与 x 的乘积”, )(xf 也不一定是解析式,再研究函数时,除 用符号 )(xf 外,还常用 ( ), ( ), ( )g x F x G x 等符号来表示。3、判断两个变量之间是否具有函数关系, 只要检验:(1) x 的取值集合是否为空集;(2)根据给出的对应关系,自变量 x 在其定义域内的每 一个值,是否都有唯一确定的函数值与之对应。 五:函数的值:  f a 表示当 x a 时,函数  f x 的值,这个值就由“ f ”这一对应关系来确定; )(xf 与 )(af 是不同的,前者表示以 x 为自变量的函数,后者为常数 六:函数的三要素 : 我们通常把对应法则 f 、定义域 A 、值域 Axxf |)( 称为函数的三要素。由函数的定义可 知,由于函数值域被函数的定义域和对应关系完全确定,这样确定一个函数只需两个要素:定义域 和对应法则。如果两个函数的定义域和对应法则分别相同,我们就说这两个函数是同一函数。 七:区间的概念和记号: 名称 定义 符号 数轴表示 闭区间  x a x b   ,a b 开区间 { x a < x <b }  ,a b 左闭右开区间 ﹛ x a x <b ﹜  ,a b 左开右闭区间 { x a < x b }  ,a b 无穷区间 { x x a }  ,a 无穷区间 { x x < a }  ,a 无穷区间 { x x a }  ,a  3 无穷区间 { x x > a }  ,a  特别提醒:书写区间记号时: (1)有完整的区间外围记号,有两个区间端点,且左端点小于右端点;(2)两个端点之间用“,” 隔开;(3)无穷大是一个符号,不是一个数;以“  ”或“  ”为区间一端时,这一端必是小括 号。 八:分段函数 有些函数在它的定义域中,对于自变量 x 的不同取值范围,对应法则不同,这样的函数通常称 为分段函数。如函数 0 0 0 0 x x y x x x x       特别提醒:1、分段函数是一个函数,而不是几个函数;2、它是一类较特殊的函数。在求分段 函数的值 0( )f x 时,一定首先要判断 0x 属于定义域的哪个子集,然后再代相应的关系式;3、分段函 数的值域应是其定义域内不同子集上各关系式的取值范围的并集。 九:复合函数 如果    ,y f u u g x  ,那么  y f g x    叫做 f 和 g 的复合函数,其中  g x 为内函数,  f u 为外函数。 类型一 映射的概念 例 1:已知集合 A={1,2,3,4},B={5,6,7},在下列 A 到 B 的四个对应关系中,能否构成 A 到 B 的映射?说明理由. 解析:(1)、(3)是 A 到 B 的映射,都符合映射的定义,即 A 中的每一个元素在 B 中都有惟一元 素与之对应;(2)不是 A 到 B 的映射,因为 A 中的元素 4 在 B 中没有元素与之对应;(4)不是 A 到 B 的映射,因为 A 中的元素 3 在 B 中有两个元素与之对应. 答案:(1)、(3)是 A 到 B 的映射;(2)、(4)不是 A 到 B 的映射 练习 1:设集合 A={x|0≤x≤4},B={y|0≤y≤2},则下列对应 f 中不能构成 A 到 B 的映射的 是( ) A.f:x→y=1 2 x B.f:x→y=x-2 C.f:x→y= x D.f:x→y==|x-2| 答案:B 练习 2: (2014~2015 学年度四川德阳五中高一上学期月考)下列对应是集合 A 到集合 B 的映射 的是( ) A.A=N*,B=N*,f:x→|x-3| 4 B.A={平面内的圆};B={平面内的矩形},f:每一个圆对应它的内接矩形 C.A={x|0≤x≤2},B={y|0≤y≤6},f:x→y=1 2 x D.A={0,1},B={-1,0,1},f:A 中的数开平方 答案:C 类型二 映射中的象与原象 例 2:已知集合 A=R,B={(x,y)|x,y∈R},f:A→B 是从 A 到 B 的映射,f:x→(x+1,x2 +1),求 A 中元素 2的象和 B 中元素(3 2 ,5 4 )的原象. 解析:把 x= 2代入对应法则,得其象为( 2+1,3), 又由 x+1=3 2 x2+1=5 4 ,解得 x=1 2 . ∴ 2的象为( 2+1,3),(3 2 ,5 4 )的原象为1 2 . 答案: 2的象为( 2+1,3),(3 2 ,5 4 )的原象为1 2 . 练习 1:已知映射 f:(x,y)―→(3x-2y+1,4x+3y-1). (1)求(-1,2)的象; (2)求(-1,2)的原象. 答案:(-1,2)的象为(-6,1).(-1,2)的原象为(0,1). 练习 2:(2014~2015 学年度安徽宿州市十三校高一上学期期中测试)在映射 f:A→B 中,集合 A=B={(x,y)|x、y∈R},且 f:(x,y)→(x-y,x+y),则 B 中的元素(-1,2)在集合 A 中的原象 为________. 答案: 1 2 ,3 2 类型三 函数的概念 例 3:设 M={x|0≤x≤2},N={y|0≤y≤2}给出下列 4 个图形,其中能表示集合 M 到集合 N 的 函数关系的有( ) A.0 个 B.1 个 C.2 个 D.3 个 解析:由函数的定义知,(1)不是,因为集合 M 中 10},f:x→y=|x|; (2)A=Z,B=Z,f:x→y=x2+x; 答案:(1)否 (2)是 练习 2:下列关于函数与区间的说法正确的是( ) A.函数定义域必不是空集,但值域可以是空集 B.函数定义域和值域确定后,其对应法则也就确定了 C.数集都能用区间表示 D.函数中一个函数值可以有多个自变量值与之对应 答案:D. 类型四 同一函数的判定 例 4:下列各组函数是同一函数的是( ) ①f(x)= -2x3与 g(x)=x -2x; ②f(x)=x 与 g(x)= x; ③f(x)=x0 与 g(x)=1 x0; ④f(x)=x2-2x-1 与 g(x)=t2-2t-1. A.①② B.①③ C.③④ D.①④ 解析:对于①、②,两函数的对应法则都不同,对于③、④,两函数的定义域和对应法则都相 同,故选 C. 答案:C. 练习 1:(2014~2015 学年度潍坊四县市高一上学期期中测试)下列四组函数,表示同一函数的 是( ) A.f(x)= x2,g(x)=x B.f(x)=x,g(x)=x2 x C.f(x)= x2-4,g(x)= x-2· x+2 D.f(x)=x,g(x)= 3 x3 答案:D 练习 2:下列函数中哪个与函数 xy  是同一个函数,把序号填在横线上 。 1  2 xy  ; ② 3 3xy  ; ③ 2xy  答案: ② 类型五 函数的定义域 例 5:求下列函数的定义域: (1)y=3-1 2 x; (2)y= 2x+3- 1 2-x +1 x ; 解析:(1)函数 y=3-1 2 x 的定义域为 R. 6 (2)要使函数有意义,则有 2x+3≥0 2-x>0 x≠0 , 解得-3 2 ≤x<2,且 x≠0. ∴所求函数的定义域为 x|-3 2 ≤x<2,且 x≠0 . 答案:(1)R(2) x|-3 2 ≤x<2,且 x≠0 . 练习 1:求下列函数的定义域: (1)y= x-1 x2-3x+2 ; (2)y= x2-1+ 1-x2; (3)y= 1 1-|x| + x2-1. 答案:(1) {x∈R|x≠1,且 x≠2}.(2){-1,1}.(3) (-∞,-1)∪(1,+∞). 练习 2:(2014~2015 学年度山东枣庄第八中学高一上学期期中测试)函数 y= x+1 x 的定义域是 ( ) A.[-1,+∞) B.(0,+∞) C.(-1,+∞) D.[-1,0)∪(0,+∞) 答案: D 类型六 求函数值 例 6:若 f(x)=1-x 1+x (x≠-1),求 f(0),f(1),f(1-a)(a≠2),f[f(2)]. 解析:f(0)=1-0 1+0 =1;f(1)=1-1 1+1 =0; f(1-a)=1- 1-a 1+ 1-a = a 2-a (a≠2); f[f(2)]=1-f 2 1+f 2 = 1-1-2 1+2 1+1-2 1+2 =2. 答案: 2 练习 1:已知函数 f(x)=3x2-5x+2,求 f(3),f(- 2),f(a+1) 答案:f(3)=14;f(- 2)=8+5 2;f(a+1)=3a2+a. 练习 2:已知函数 f(x)=x2+x-1.求 f(2),f(1 x ); 答案: f(2)=5,f 1 x =1+x-x2 x2 . 7 1. 给出下列关于从集合 A 到集合 B 的映射的论述,其中正确的有_________。 ① B 中任何一个元素在 A 中必有原象;② A 中不同元素在 B 中的象也不同;③ A 中任何一个 元素在 B 中的象是唯一的;④ A 中任何一个元素在 B 中可以有不同的象;⑤ B 中某一元素在 A 中 的原象可能不止一个;⑥集合 A 与 B 一定是数集;⑦记号 BAf : 与 ABf : 的含义是一样的. 答案:③⑤ 2. 下列集合 A 到集合 B 的对应中,判断哪些是 A 到 B 的映射? 判断哪些是 A 到 B 的一一映 射? (1) ZBNA  , ,对应法则 :f ByAxxyx  ,, ; (2)  RA ,  RB , xyxf 1:  , Ax  , By  ; 答案: (1)是映射,不是一一映射, (2)是映射,是一一映射. 3. 下列各式能否确定 y 是 x 的函数? (1) 2 2 1x y  ;(2) 2 3 0x y   ;(3) 3 2y x x    答案:(1)不能(2)能;(3)不能。 4. 已知   2 3 1f x x x   ,则  1f  ;  5f   ;  2f  ;  f a  ;  2 1f a   。 答案:-1;41;3 3 2 ; 2 3 1a a  ; 24 10 5a a  。 5.下列各组函数中,把表示同一函数组的序号填在横线上 。 ①  2 ,y x y x  ; ②  22 ,y x y x  ; ③ 2 11, 1 xy x y x     ; ④ 0 , 1y x y  ⑤ 2,y x y x  答案:⑤ _________________________________________________________________________________ _________________________________________________________________________________ 基础巩固 1.下列对应是从集合 A 到集合 B 的映射的是( ) A、  , 0 , , :A R B x x x R x A f x x     且 B、 , , : 1,A N B N x f xA    C、   20 , , , :A x x x R B R x A f x x     且 D、 1, , , :A Q B Q x A f x x     答案:C 2. 已知    0 4 , 0 2P x x Q y y      ,下列对应不表示从 P 到Q 的函数的是( ) A、 1: 2f x y x  B、 1: 3f x y x  C、 3: 2f x y x  D、 :f x y x  答案:C 8 3.(2014~2015 学年度广东肇庆市高一上学期期中测试)函数 f(x)= 2-x+ x-2的定义域为 ____________. 答案:2 4. BAf : 是从 A 到 B 的映射,其中 RA  ,  RyxyxB  ,),( , )1,1(: 2  xxxf , 则 A 中元素 2 的象是 ; B 中元素 )2,2( 的原象 。 答案: )3,12(  1 5. 己 知 集 合    4 21,2,3, , 4,7, , 3A k B a a a   , 且 , , ,a N x A y B   使 B 元 素 3 1y x  和 A 中的元素 x 对应,则 a = , k = 。 答案:2 5 6. 已知函数   2f x x px q   满足    1 2 0f f  ,则  1f   。 答案:6 7. 下列函数中哪个与函数 xy  是同一个函数,把序号填在横线上 。 ①  2 xy  ; ② 3 3xy  ; ③ 2xy  答案:② 能力提升 8. 已知    2 1 1f x x g x x    求    ,f g x g f x       答案:    2 1 1 2f g x x x x       ;   2 1 1g f x x     9. 已知      1 0 )( x xf  )0( )0( )0(    x x x ,分别求         1 , 1 , 0 , 1f f f f f f    的值。 答案: (1) 2 ( 1) 0 (0) { [ ( 1)]} 1 f f f f f f       ; ; ; ; 10. 将下列集合用区间表示: (1) 2 01 xx x      ; (2) 1 2 3x x x  或 ; (3) 1,x x x R   。 答案:(1)   ,1 2,   ;(2)   1 2,3 ;(3)     , 1 1,1 1,     。