- 194.56 KB
- 2021-06-16 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
泰宁一中2019-2020学年上学期第一次阶段考试
高一数学科试卷
(考试时间:120分钟,满分:100分)
一、选择题(本大题共12小题,每小题3分,共36分。在每小题给出的四个选项中,只有一项是符合题目要求的)
1.下列各组对象不能组成集合的是( )
A.俄罗斯世界杯参数队伍
B.中国文学四大名著
C.我国的直辖市
D.抗日战争中著名的民族英雄
2. 设集合,则下列关系中正确的是( )
A. B. C. D.
3.下列图形表示函数图象的是 ( )
x
y
O
x
y
O
x
y
O
x
y
O
A
B
C
D
4.已知,,,则集合P的子集个数为( )
A.2个 B.3个 C.4个 D.5个
5.函数 的定义域为 ( )
A. (-∞,4) B.[4,+∞) C.(-∞,4] D.(-∞,1)∪(1,4]
6.已知函数, 则的值为( )
A.1 B.2 C.4 D.5
7.下列各组函数表示同一函数的是( )
A. B.
C. D.
8.设集合,,全集,则( )
A. B.
C. D.
9.若函数y=x2+(2a-1)x+1在区间(-∞,2]上是减函数,则实数a的取值范围是( )
A. [-,+∞) B. (-∞,-] C. [,+∞) D. (-∞,]
10.如果奇函数f(x)在区间[2,8]上是减函数且最小值为6,则f(x)在区间 [﹣8,﹣2]上是( )
A.增函数且最小值为﹣6 B.增函数且最大值为﹣6
C. 减函数且最小值为﹣6 D.减函数且最大值为﹣6
11.已知函数在区间[3,5]上恒成立,则实数的最大值是( )
A.3 B. C. D.
12.设奇函数在是增函数,且,则不等式的解集为 ( )
A. B.
C. D.
二、填空题(本大题共4小题,每小题3分,共12分)
13.若函数,则= .
14. 已知集合A=-2,3,4-4,集合B=3,.若BA,
则实数= .
15.已知f(x)是R上的偶函数,且在[0,+∞)单调递增,若f(a﹣3)<f(4),则a的取值范围为 .
16.已知函数同时满足:对于定义域上任意,恒有;
对于定义域上的任意当时,恒有,则称函数为“理想函数”。在下列三个函数中:,,“理想函数”有 (只填序号)
三.解答题(本大题有6小题,共52分.解答应写出文字说明、证明过程或演算步骤)
17. (本小题满分8分) 设集合 , .
(1)若 ,求 ;
(2)若,求实数的取值范围.
18.(本小题满分8分)已知函数f(x)=|x﹣1|+1
(1)用分段函数的形式表示该函数;
(2)在右边所给的坐标系中画出该函数的图象;
(3) 写出该函数的单调区间及值域(不要求证明).
19.(本小题满分8分)已知函数是定义在上的奇函数,且当时,.
(1)计算,;
(2)求的解析式.
20.(本小题满分8分)已知A={x| -3≤x≤5}, B={x|2- a≤x≤2a-1}.
(1)若,求实数a的取值范围;
(2)若,求实数a的取值范围.
21.(本小题满分10分)已知函数,分别用定义法:
(1)判断函数的奇偶性;
(2)证明:函数在上是增函数.
22.(本小题满分10分) 已知函数在其定义域时单调递增, 且对
任意的都有成立,且.
(1)求的值;
(2)解不等式:.
高一数学参考答案及评分标准
一.选择题:本大题共有12小题,每小题3分,共36分.
题号
1
2
3
4
5
6
7
8
9
10
11
12
答案
D
B
D
C
D
D
D
D
B
D
D
D
二、填空题:本大题共有4小题,每小题3分,共12分.
13. 7 14. 2 15. ﹣1<a<7 16. ③
三、解答题
17.解:(1)若 ,则 …………………………………1分
故= …………………………………4分
(2)若,则 …………………………………6分
解得: …………………………………8分
20.解:(1)若,则 ………………………………1分
………………………………3分
(2) 若,则 ………………………………4分
当时,,满足………………………………5分
当时,由得
………………………………7分
综上,a的范围是 ………………………………8分
21、解:(1)对于函数,其定义域为 …………1分
因为对定义域内的每一个都有:
所以,函数为奇函数. ………………………………4分
(2)证明:设是区间上的任意两个实数,且则…………5分
……………7分
由得 而则即所以
………………………………9分
则
即
因此,函数在上是增函数.………………………10分
22.解: (1) ……4分
(2) 得: ……5分
……9分(列不等式组正确8分)
所以,不等式的解集为.……10分
相关文档
- 【数学】重庆市渝中区重庆复旦中学2021-06-1611页
- 辽宁省锦州市渤大附中、育明高中202021-06-1613页
- 【数学】河北省邯郸市大名一中20202021-06-169页
- 【数学】宁夏石嘴山市第三中学20192021-06-1611页
- 【数学】江西省宜春市万载中学20192021-06-1613页
- 北京市人大附中2021届高三数学10月2021-06-1615页
- 云南省玉溪一中2020-2021高二数学(2021-06-169页
- 黑龙江省鹤岗一中2021届高三数学(理2021-06-1610页
- 【数学】河北省邢台市第一中学20192021-06-1613页
- 【数学】四川省绵阳南山中学2020-22021-06-169页