• 3.42 MB
  • 2021-06-16 发布

高一数学必修一第一次月考及答案(供参考)

  • 15页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
真正的价值并不在人生的舞台上,而在我们扮演的角色中。 1 进贤二中 2014-2015 学年高一上学期第一次月考 一.选择题:(本大题共 10小题;每小题 5分,共 50分.) 1.集合{1,2,3}的真子集共有( ) A、5 个 B、6 个 C、7 个 D、8 个 2.图中的阴影表示的集合中是( ) A. BCA u B. ACB u C. )( BACu  D. )( BACu  3. 以下五个写法中:①{0}∈{0,1,2};②  {1,2};③{0,1,2}={2, 0,1};④ 0 ;⑤ AA  ,正确的个数有( ) A.1 个 B.2 个 C.3 个 D.4 个 4.下列从集合 A到集合 B的对应 f是映射的是( ) A B A B A B A B A B C D 5.函数 5|| 4    x xy 的定义域为( ) A. }5|{ xx B. }4|{ xx C. }54|{  xx D. }554|{  xxx 或 6.若函数   1,( 0) ( ) ( 2), 0 x x f x f x x       ,则 )3(f 的值为( ) A.5 B.-1 C.-7 D.2 7.已知 (x)f 是R上的奇函数,在 ( ,0) 上递增,且 ( 1)f  =0,则不等式 (x) ( ) 0f f x x    的解集为( ) A (-1,0)  (1,+ ) B (- ,-1 )  (0,1) C (- ,-1)  (1,+ ) D(-1,0) (0,1) 8.给出函数 )(),( xgxf 如下表,则 f〔g(x)〕的值域为( ) A B U 1 2 3 4 3 5 1 2 3 4 5 6 a b c d 1 2 3 4 3 4 5 1 2 真正的价值并不在人生的舞台上,而在我们扮演的角色中。 2 A.{4,2} B.{1,3} C. {1,2,3,4} D. 以上情况都有可能 9.设集合 }|{,}21|{ axxBxxA  ,若 A∩B≠,则 a 的取值范围是( ) A. 1a B. 2a C. 1a D. 21  a 10.设 }4,3,2,1{I , A与 B是 I 的子集, 若 A∩ B = }3,1{ ,则称( A , B )为一个“理想 配集”.那么符合此条件的“理想配集”的个数是 (规定( A , B )与( B , A ) 是两个不同的“理想配集”) A. 4 B. 8 C. 9 D. 16 二.填空题(本大题共 5 个小题,每小题 5 分,共 25 分) 11.已知集合  12|),(  xyyxA , }3|),{(  xyyxB 则 A B = 12.若函数 1)1( 2  xxf ,则 )2(f =_____ __ _____ 13.若函数 )(xf 的定义域为[-1,2],则函数 )23( xf  的定义域是 14.函数 2( ) 2( 1) 2f x x a x    在区间 ( , 4] 上递减,则实数a的取值范围是____ _ 15.对于函数 ( )y f x ,定义域为 ]2,2[D ,以下命题正确的是(只要求写出命题 的序号) ①若 ( 1) (1), ( 2) (2)f f f f    ,则 ( )y f x 是D上的偶函数; ②若对于 ]2,2[x ,都有 0)()(  xfxf ,则 ( )y f x 是D上的奇函数; ③若函数 )(xfy  在D上具有单调性且 )1()0( ff  则 ( )y f x 是D上的递减函数; ④若 ( 1) (0) (1) (2)f f f f    ,则 ( )y f x 是D上的递增函数。 三.解答题:(本大题共 6小题,共 75分,解答应写出文字说明)。 16.(本小题 12分). 全集 U=R,若集合  | 3 10A x x   ,  | 2 7B x x   ,则 (1)求 A B , A B , ( ) ( )U UC A C B ; (2)若集合 C= | 3 2 1x a x a A C C    且 ,求 a的取值范围;(结果用区间或 集合表示) X 1 2 3 4 g(x) 1 1 3 3 X 1 2 3 4 f(x) 4 3 2 1 真正的价值并不在人生的舞台上,而在我们扮演的角色中。 3 17. (本题满分 12 分) 已知定义在(-1,1)上的函数 ( )f x 是减函数,且 )2()1( afaf  ,求 a的取值范围。 18.(本小题 12 分) 如图,用长为 1的铁丝弯成下部为矩形,上部为半圆形的框架,若半圆半径为 x,此 框架围成的面积为 y,求 y关于 x的函数,并写出它的定义域. 真正的价值并不在人生的舞台上,而在我们扮演的角色中。 4 19.(本小题 12 分) 已知函数          )2( )21( )1( 2 2 )( 2 x x x x x x xf (1)在坐标系中作出函数的图象; (2)若 1( ) 2 f a  ,求 a的取值集合; 20. (13 分)二次函数  2 2(x) x 2(2a 1) x 5a 4 2 0f a      在 ,1 上的最小值为g(a) ,求 g(a)的解析式及最小值。 21.(14 分)已知 f(x)的定义域为(0,+∞),且满足 f(2)=1,f(xy)=f(x)+f(y), 又当 x2>x1>0 时,f(x2)>f(x1). (1)求 f(1)、f(4)、f(8)的值; (2)若有 f(x)+f(x-2)≤3 成立,求 x的取值范围. 真正的价值并不在人生的舞台上,而在我们扮演的角色中。 5 兴义九中 2011-2012学年度第一学期高一第一次月考 一、选择题(每小题 5 分,共计 60 分) 1. 下列命题正确的是 ( ) A.很小的实数可以构成集合。 B.集合 1| 2  xyy 与集合   1|, 2  xyyx 是同一个集合。 C.自然数集 N 中最小的数是1。 D.空集是任何集合的子集。 2.函数 23 2( ) 1 3 1     xf x x x 的定义域是 ( ) A. 1[ ,1] 3  B. 1( ,1) 3  C. 1 1( , ) 3 3  D. 1( , ) 3   3. 已知    2 2| 1 , | 1     M x y x N y y x , NM  等于( ) A. N B.M C.R D. 4. 下列给出函数 ( )f x 与 ( )g x 的各组中,是同一个关于 x的函数的是 ( ) A. 2 ( ) 1, ( ) 1xf x x g x x     B. ( ) 2 1, ( ) 2 1f x x g x x    C. 32 6( ) , ( )f x x g x x  D. 0( ) 1, ( )f x g x x  5. 已 知 函 数   5 3 3f x ax bx cx    ,  3 7f   , 则  3f 的 值 为 ( ) A. 13 B. 13 C.7 D. 7 6. 若函数 2 (2 1) 1   y x a x 在区间(-∞,2 ]上是减函数,则实数a的取值范围是 ( ) A.[- 2 3 ,+∞) B.(-∞,- 2 3 ] C.[ 2 3 ,+∞) D.(-∞, 2 3 ] 7. 在函数 2 2, 1 , 1 2 2 , 2 x x y x x x x          中,若 ( ) 1f x  ,则 x的值是 ( ) 真正的价值并不在人生的舞台上,而在我们扮演的角色中。 6 B BAA U UU CBA A.1 B. 31 2 或 C. 1 D. 3 8. 已知函数 2( ) 1  f x mx mx 的定义域是一切实数 , 则 m 的取值范围是 ( ) A.0f(x-2)+3∵f(8)=3,∴f(x)>f(x-2)+f(8)=f(8x-16) ∵f(x)是(0,+∞)上的增函数∴      )2(8 0)2(8 xx x 解得 20, 2 2( ) ( ) 2( ) 2f x x x x x        又 f(x)为奇函数,∴ 2( ) ( ) 2f x f x x x      , ∴ f(x)=x2+2x,∴m=2 ……………4 分 y=f(x)的图象如右所示 ……………6 分 (2)由(1)知 f(x)= 2 2 2 ( 0) 0 ( 0) 2 ( 0) x x x x x x x         ,…8 分 由图象可知, ( )f x 在[-1,1]上单调递增,要使 ( )f x 在[-1,|a|-2]上单调递 增,只需 | | 2 1 | | 2 1 a a       ……………10 分 解之得 3 1 1 3a a     或 ……………12 分 任丘一中 2010-2011 学年高一第一学期第一次阶段考试 1—5:BDCDC 6—10:DBCAB 11—12:AB13. 3 14.  2,7 15. 21 5 x x 16. 0 或117. 解:   1,2A B  真正的价值并不在人生的舞台上,而在我们扮演的角色中。 14 18.解:(1)∵  BA ∴ 1a 或 53 a 即 1a 或 2a (2)∵ ABA  ∴ BA  ∴ 13 a 或 5a 即 4a 或 5a 19.解: 80 3 m  20.(1)设 1 23 5x x   ,则    1 2 1 2 1 2 2 1 2 1, 1 1 x xf x f x x x       1 2 3 5x x   ∴ 1 2 1 20, 1 0, 1 0x x x x      ∴        1 2 1 20,f x f x f x f x  即 ∴    2 1 1 xf x x    在 3,5 上是增函数 (2)由(1)可知    2 1 1 xf x x    在 3,5 上是增函数, ∴ 当  3 ,x f x 时 有最小值   53 4 f  当     35 , 5 2 x f x f 时 有最大值                       1 2 1 2 1 2 1 2 2 1 1 2 1 2 1 2 2 1 2 1 1 1 2 1 1 2 1 1 1 1 3 1 1 x xf x f x x x x x x x x x x x x x                    21.(1)由 2( ) ( 1) 2f x a x b a     ,  0a  可知, )(xf 在区间 2,3 单调递增, 即     2 2 3 5 f f    解得: 1, 0a b  ; (2)    2 2 2g x x m x    在  4,2 上是单调函数,只需 1 2 2 m   或1 4 2 m    2m  或 6m  22.解:(1) ( ) 5f x x ,15 40x  , 90,15 30 ( ) 30 2 ,30 40 x g x x x        ; (2)当 5x=90 时,x=18, 即当15 18x  时, ( ) ( )f x g x ;当 18x  时, ( ) ( )f x g x ; 当18 40x  时, ( ) ( )f x g x ; ∴当15 18x  时,选甲家比较合算;当 18x  时,两家一样合算; 当18 40x  时,选乙家比较合算. 真正的价值并不在人生的舞台上,而在我们扮演的角色中。 15