- 64.78 KB
- 2021-06-17 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
福建省长乐第一中学高中数学必修三《1.1.1 算法的概念(第1课时)》教案
【课程标准】通过对解决具体问题过程与步骤的分析(如二元一次方程组求解等问题),体会算法的思想,了解算法的含义.
【教学目标】1.理解算法的概念与特点;
2.学会用自然语言描述算法,体会算法思想;
3.培养学生逻辑思维能力与表达能力.
【教学重点】算法概念以及用自然语言描述算法
【教学难点】用自然语言描述算法
【教学过程】
一、序言
算法不仅是数学及其应用的重要组成部分,也是计算机科学的重要基础. 在现代社会里,计算机已经成为人们日常生活和工作不可缺少的工具. 听音乐、看电影、玩游戏、打字、画卡通画、处理数据,计算机几乎渗透到了人们生活的所有领域. 那么,计算机是怎样工作的呢?要想弄清楚这个问题,算法的学习是一个开始. 同时,算法有利于发展有条理的思考与表达的能力,提高逻辑思维能力.
在以前的学习中,虽然没有出现算法这个名词,但实际上在数学教学中已经渗透了大量的算法思想,如四则运算的过程、求解方程的步骤等等,完成这些工作都需要一系列程序化的步骤,这就是算法的思想.
二、实例分析
例1:写出你在家里烧开水过程的一个算法.
解:第一步:把水注入电锅;
第二步:打开电源把水烧开;
第三步:把烧开的水注入热水瓶.
(以上算法是解决某一问题的程序或步骤)
例2:给出求1+2+3+4+5的一个算法.
解: 算法1 按照逐一相加的程序进行
第一步:计算1+2,得到3;
第二步:将第一步中的运算结果3与3相加,得到6;
第三步:将第二步中的运算结果6与4相加,得到10;
第四步:将第三步中的运算结果10与5相加,得到15.
算法2 可以运用公式1+2+3+…+=直接计算
第一步:取=5;
第二步:计算;
第三步:输出运算结果.
(说明算法不唯一)
例3:(课本第2页,解二元一次方程组的步骤)
(可推广到解一般的二元一次方程组,说明算法的普遍性)
例4:(必修2第129页)用“待定系数法”求圆的方程的大致步骤是:
第一步:根据题意,选择标准方程或一般方程;
第二步:根据条件列出关于,,或,,的方程组;
第三步:解出,,或,,,代入标准方程或一般方程.
三、算法的概念
通过对以上几个问题的分析,我们对算法有了一个初步的了解.在解决某些问题时,需要设计出一系列可操作或可计算的步骤,通过实施这些步骤来解决问题,通常把这些步骤称为解决这些问题的算法.
在数学中,现代意义上的“算法”通常是指可以用计算机来解决的某一类问题的程序或步骤,这些程序或步骤必须是明确和有效的,而且能够在有限步之内完成.
四、知识应用
例5:(课本第3页例1)(难点是由质数的定义判断一个大于1的正整数是否为质数的基本方法)
练习1:(课本第4页练习2)任意给定一个大于1的正整数,设计一个算法求出的所有因数.
解:根据因数的定义,可设计出下面的一个算法:
第一步:输入大于1的正整数.
第二步:判断是否等于2,若,则的因数为1,;若,则执行第三步.
第三步:依次从2到检验是不是整除,若整除,则是的因数;若不整除,则不是的因数.
例6:(课本第4页例2)
练习2:设计一个计算1+2+…+100的值的算法.
解:算法1 按照逐一相加的程序进行
第一步:计算1+2,得到3;
第二步:将第一步中的运算结果3与3相加,得到6;
第三步:将第二步中的运算结果6与4相加,得到10;
……
第九十九步:将第九十八步中的运算结果4950与100相加,得到5050.
算法2 可以运用公式1+2+3+…+=直接计算
第一步:取=100;
第二步:计算;
第三步:输出运算结果.
练习3:(课本第4页练习1)任意给定一个正实数,设计一个算法求以这个数为半径的圆的面积.
解:第一步:输入任意正实数;
第二步:计算;
第三步:输出圆的面积.
五、课堂小结
1. 算法的特性:
①有穷性:一个算法的步骤序列是有限的,它应在有限步操作之后停止,而不能是无限的.
②确定性:算法中的每一步应该是确定的并且能有效地执行且得到确定的结果,而不应当是模棱两可.
③可行性:算法中的每一步操作都必须是可执行的,也就是说算法中的每一步都能通过手工和机器在有限时间内完成.
④输入:一个算法中有零个或多个输入..
⑤输出:一个算法中有一个或多个输出.
2. 描述算法的一般步骤:
①输入数据.(若数据已知时,应用赋值;若数据为任意未知时,应用输入)
②数据处理. ③输出结果.
六、作业
1. 有A、B、C三个相同规格的玻璃瓶,A装着酒精,B装着醋,C为空瓶,请设计一个算法,把A、B瓶中的酒精与醋互换.
2. 写出解方程的一个算法.
3. 利用二分法设计一个算法求的近似值(精确度为0.005).
()
()
4. 已知,,写出求直线AB斜率的一个算法.
5. 已知函数 设计一个算法求函数的任一函数值.
相关文档
- 2020届高三数学上学期期中试题(B)理(2021-06-174页
- 高中数学选修2-3公开课课件2_3离散2021-06-1712页
- 2020届二轮复习第一课时等差数列的2021-06-1725页
- 2018届二轮复习小题押题16—(14)算2021-06-1742页
- 考点04 函数的概念(定义域、值域、2021-06-1716页
- 2019高三数学(人教A版 文)一轮课时分2021-06-176页
- 高中数学必修5:4_备课资料(1_1_3 解2021-06-172页
- 名师解读高考真题系列-高中数学(理数2021-06-1714页
- 2020高中数学 课时分层作业2 弧度2021-06-175页
- 高中数学《1_1_3-2 补集及集合的综2021-06-173页