• 80.00 KB
  • 2021-06-17 发布

高考数学专题复习练习第五章 第一节 数例的概念与简单表示法 课下练兵场

  • 5页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
第五章 第一节 数例的概念与简单表示法 课下练兵场 命 题 报 告 ‎ 难度及题号 知识点 容易题 ‎(题号)‎ 中等题 ‎(题号)‎ 稍难题 ‎(题号)‎ 观察法求数列 的通项公式 ‎2‎ ‎8‎ 求数列的通项公式 ‎1、6‎ ‎7、9、10‎ ‎11‎ 数列的性质 ‎3‎ ‎4、5‎ ‎12‎ 一、选择题 ‎1.在数列{an}中,a1=1,anan-1=an-1+(-1)n(n≥2, ∈N*),则的值是 (  )‎ A.       B. C. D. 解析:由已知得a2=1+(-1)2=2,‎ ‎∴a3·a2=a2+(-1)3,∴a3=,‎ ‎∴a4=+(-1)4,∴a4=3,‎ ‎∴‎3a5=3+(-1)5,∴a5=,‎ ‎∴==.‎ 答案:C ‎2.下列关于星星的图案构成一个数列,该数列的一个通项公式是 (  )‎ A.an=n2-n+1 B.an= C.an= D.an= 解析:从图中可观察星星的构成规律,‎ n=1时,有1个;n=2时,有3个;‎ n=3时,有6个;n=4时,有10个;…‎ ‎∴an=1+2+3+4+…+n=.‎ 答案:C ‎3.若数列{an}满足a1=1,a2=2,an=(n≥3且n∈N*),则a17= (  )‎ A.1 B‎.2 C. D.2-987‎ 解析:由已知得a1=1,a2=2,a3=2,a4=1,a5=,a6=,a7=1,a8=2,a9=2,a10=1,a11=,a12=,即an的值以6为周期重复出现,故a17=.‎ 答案:C ‎4.在数列{an}中,an=4n-,a1+a2+…+an=an2+bn,n∈N*,其中a,b为常数,则ab等于 (  )‎ A.1 B.-‎1 C.2 D.-2‎ 解析:法一:n=1时,a1=,‎ ‎∴=a+b, ①‎ 当n=2时,a2=,∴+=‎4a+2b, ②‎ 由①②得,a=2,b=-,∴ab=-1.‎ 法二:a1=,Sn==2n2-n,‎ 又Sn=an2+bn,∴a=2,b=-,‎ ‎∴ab=-1.‎ 答案:B ‎5.对于任意函数f(x),x∈D,可构造一个数列发生器,其工作原理如下:‎ ‎①输入数据x0∈D,经过数列发生器后输出x1=f(x0);‎ ‎②若x1∉D,则数列发生器结束工作;若x1∈D,则将x1反馈回输入端,再输出x2=f(x1),并依此规律继续下去.‎ 现定义f(x)=2x+1,D=(0,1000),若输入x0=1,这样,当发生器结束工作时,输出数据的总个数为 (  )‎ A.8 B‎.9 C.10 D.11‎ 解析:依题意得,x1=f(x0)=f(1)=3,当n≥2时,若xn-1∈D,则输出xn=f(xn-1)‎ ‎=2xn-1+1.‎ 由此得到输出数据分别为:3,7,15,31,63,127,255,511,1 023.‎ 故当发生器结束工作时,输出数据的总个数为9.‎ 答案:B ‎6.已知数列{an}、{bn}的通项公式分别为an=an+2,bn=bn+1(a、b为常数),且a>b,那么两个数列中序号与数值均相同的项的个数是 (  )‎ A.0 B‎.1 C.2 D.3‎ 解析:设an+2=bn+1,‎ ‎∴(a-b)n+1=0,‎ ‎∵a>b,n>0,‎ ‎∴(a-b)n+1=0不成立.‎ 答案:A 二、填空题 ‎7.数列{an}满足a1=0,an+1=an+2n,则{an}的通项公式an=    .‎ 解析:由已知,an+1-an=2n,故an=a1+(a2-a1)+(a3-a2)+…+(an-an-1)=0+2+4+…+2(n-1)=n(n-1).‎ 答案:n(n-1)‎ ‎8.数列,,,,…中,有序数对(a,b)可以是    .‎ 解析:从上面的规律可以看出 解上式得 答案:(,-)‎ ‎9.已知数列{an}中,a1=1,nan=a1+‎2a2+‎3a3+…+(n-1)·an-1(n≥2),则a2010=    .‎ 解析:∵nan=a1+‎2a2+…+(n-1)an-1(n≥2),‎ ‎∴(n-1)an-1=a1+‎2a2+‎3a3+…+(n-2)an-2(n≥3).‎ 减,‎ 得nan-(n-1)an-1=(n-1)an-1(n≥3),‎ 即nan=2(n-1)an-1,∴=2×(n≥3).‎ 又易知a2=,故a2010=a1××××…×=22009×××…×=.‎ 答案: 三、解答题 ‎10.已知数列{an}中,a1=0,an+1=an+2n-1(n∈N*).求数列{an}的通项公式an.‎ 解:法一:(累加法)‎ ‎∵an+1=an+2n-1,‎ ‎∴an-an-1=2(n-1)-1,‎ an-1-an-2=2(n-2)-1,‎ ‎…‎ a3-a2=2×2-1,‎ a2-a1=2×1-1.‎ 以上各式左右两边分别相加得 an-a1=2 [1+2+3+…+(n-1)]-(n-1)‎ ‎=n(n-1)-(n-1)=(n-1)2.‎ ‎∴an=(n-1)2.‎ 法二:(迭代法)‎ ‎∵an+1=an+2n-1,‎ ‎∴an=an-an-1+an-1‎ ‎=(an-an-1)+(an-1-an-2)+an-2‎ ‎=…‎ ‎=(an-an-1)+(an-1-an-2)+…+(a3-a2)+(a2-a1)+a1‎ ‎=2(n-1)-1+2(n-2)-1+…+2×2-1+2×1-1+0‎ ‎=(n-1)2.‎ ‎11.已知数列{an}的前n项和为Sn,若S1=1,S2=2,且Sn+1-3Sn+2Sn-1=0(n∈N*且 n≥2),求该数列的通项公式.‎ 解:由S1=1得a1=1,又由S2=2可知a2=1.‎ ‎∵Sn+1-3Sn+2Sn-1=0(n∈N*且n≥2),‎ ‎∴Sn+1-Sn-2Sn+2Sn-1=0(n∈N*且n≥2),‎ 即(Sn+1-Sn)-2(Sn-Sn-1)=0(n∈N*且n≥2),‎ ‎∴an+1=2an(n∈N*且n≥2),故数列{an}从第2项起是以2为公比的等比数列.‎ ‎∴数列{an}的通项公式为an=‎ ‎12.已知数列{an}的通项公式为an=n2-n-30.‎ ‎(1)求数列的前三项,60是此数列的第几项?‎ ‎(2)n为何值时,an=0,an>0,an<0?‎ ‎(3)该数列前n项和Sn是否存在最值?说明理由.‎ 解:(1)由an=n2-n-30,得 a1=1-1-30=-30,‎ a2=22-2-30=-28,‎ a3=32-3-30=-24.‎ 设an=60,则60=n2-n-30.解之得n=10或n=-9(舍去).‎ ‎∴60是此数列的第10项.‎ ‎(2)令n2-n-30=0,解得n=6或n=-5(舍去).‎ ‎∴a6=0.‎ 令n2-n-30>0,解得n>6或n<-5(舍去).‎ ‎∴当n>6(n∈N*)时,an>0.‎ 令n2-n-30<0,解得-5<n<6.‎ 又n∈N*,∴0<n<6.‎ ‎∴当0<n<6(n∈N*)时,an<0.‎ ‎(3)由an=n2-n-30=(n-)2-30,n∈N*,‎ 知{an}是递增数列,‎ 且a1<a2<…<a5<a6=0<a7<a8<a9<…,‎ 故Sn存在最小值S5=S6,Sn不存在最大值.‎