- 64.50 KB
- 2021-06-21 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
第一章 计数原理
滚动训练二(§1.1~§1.3)
一、选择题
1.设二项式n的展开式各项系数的和为a,所有二项式系数的和为b,若a+2b=80,则n的值为( )
A.8 B.4 C.3 D.2
考点 展开式中系数的和问题
题点 二项展开式中系数的和问题
答案 C
解析 由题意a=4n,b=2n,∵a+2b=80,
∴4n+2×2n-80=0,
即(2n)2+2×2n-80=0,解得n=3.
2.已知甲组有5名男同学、3名女同学;乙组有6名男同学、2名女同学.若从甲、乙两组中各选出2名同学,则选出的4人中恰有1名女同学的不同选法共有( )
A.150种 B.180种 C.300种 D.345种
考点 排列的应用
题点 元素“在”与“不在”问题
答案 D
解析 由题知共有CCC+CCC=345(种)选法.
6
3.3对夫妇去看电影,6个人坐成一排,若女性的邻座只能是其丈夫或其他女性,则不同的坐法种数为( )
A.54 B.60 C.66 D.72
考点 排列的应用
题点 元素“相邻”与“不相邻”问题
答案 B
解析 记3位女性为a,b,c,其丈夫依次为A,B,C,3位女性都相邻的可能情形有两类:第一类,男性在两端(如BAabcC),有2A种坐法;第二类,男性在一端(如BCAabc),有2AA种坐法,故共有A(2A+2)=36(种)坐法.仅有两位女性相邻的可能情形也有两类:第一类,这两人在一端(如abBACc);第二类,这两人两端都有其他人(如AabBCc),共有2A(1+1)=24(种)坐法.综上,满足题意的坐法共有36+24=60(种).
4.9名同学分别到数学、物理、化学3个学习小组参加研究性学习活动,每组3人,则不同的分配方案种数为( )
A.CCA B.
C.CCC D.以上都不对
考点 排列组合综合问题
题点 分组分配问题
答案 C
解析 分配方案分三步完成:第一步,从9名同学中选3人到数学学习小组,有C种方法;第二步,从其余的6名同学中选3人到物理学习小组,有C种方法;第三步,剩余的3名同学到化学学习小组,有C种方法.根据分步乘法计数原理知,不同的分配方案共有CCC种.
5.(1+x)4的展开式中,含x2的项的系数为( )
A.10 B.6 C.4 D.12
考点 二项展开式中的特定项问题
题点 求多项展开式中特定项的系数
答案 A
解析 根据乘法公式,得因式1+中的1和(1+x)4展开式中含x2的项相乘可得含x2的项;因式1+中的和(1+x)4展开式中含x3的项相乘可得含x2的项.(1+x)4展开式的通项为Tk+1=Cxk(k=0,1,…,4),故(1+x)4展开式中含x2的项为1·Cx2+·Cx3=10x2,即含x2的项的系数为10.
6
6.从集合{1,2,3,…,10}中选出由5个数组成的子集,使得这5个数中任何两个数的和不等于11,则这样的子集共有( )
A.10个 B.16个 C.20个 D.32个
考点 组合的应用
题点 有限制条件的组合问题
答案 D
解析 因为这10个数中两数之和为11的共有5组,即(1,10),(2,9),(3,8),(4,7),(5,6),所以从10个数中任取5个数组成一个子集,使得这5个数中任何两个数的和不等于11的子集个数共有CCCCC=32(个).
7.把3盆不同的兰花和4盆不同的玫瑰花摆放在如图1,2,3,4,5,6,7,所示的位置上,其中3盆兰花不能放在一条直线上,则不同的摆放方法有( )
A.2 680种 B.4 320种
C.4 920种 D.5 140种
考点 排列的应用
题点 排列的简单应用
答案 B
解析 先将7盆花全排列,共有A种排法,其中3盆兰花排在一条直线上的排法有5AA(种),故所求摆放方法有A-5AA=4 320(种).
8.在(ax+1)7的展开式中,x3的系数是x2的系数和x5的系数的等比中项,则实数a的值为( )
A. B. C. D.
考点 展开式中系数的和问题
题点 多项展开式中系数的和问题
答案 A
解析 ∵(ax+1)7的二项展开式的通项为Tk+1=C(ax)7-k,∴x3的系数是Ca3,x2的系数是Ca2,x5的系数是Ca5.∵x3的系数是x2的系数与x5的系数的等比中项,∴(Ca3)2=Ca2×Ca5,∴a=.
二、填空题
9.不等式A-n<7的解集为________.
考点 排列数公式
6
题点 解含有排列数的方程或不等式
答案 {3,4}
解析 由不等式A-n<7,得(n-1)(n-2)-n<7,整理得n2-4n-5<0,解得-1
相关文档
- 高中数学必修5公开课教案3_2_1 一2021-06-216页
- 2017-2018学年吉林省普通高中友好2021-06-2112页
- 2020高中数学 每日一题之快乐暑假 2021-06-212页
- 2020高中数学 课时分层作业16 基本2021-06-214页
- 2019-2020学年高中数学第一章不等2021-06-2130页
- 高中数学必做100题--数学1(16题)2021-06-219页
- 2020高中数学 第2章 平面解析几何2021-06-214页
- 高中数学选修《椭圆的几何性质》测2021-06-215页
- 2017-2018学年湖北省鄂东南示范高2021-06-217页
- 广东广州市天河区普通高中2018届高2021-06-216页