- 48.50 KB
- 2021-06-21 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
课时跟踪检测(三) 几个常用函数的导数和基本初等函数的导数公式
A级——学考水平达标
1.已知f(x)=ln x,则f′(e)=( )
A.0 B.
C.1 D.e
解析:选B ∵f(x)=ln x,∴f′(x)=,则f′(e)=.
2.若指数函数f(x)=ax(a>0,a≠1)满足f′(1)=ln 27,则f′(-1)=( )
A.2 B.ln 3
C. D.-ln 3
解析:选C f′(x)=axln a,由f′(1)=aln a=ln 27,
解得a=3,则f′(x)=3xln 3,故f′(-1)=.
3.已知f(x)=x2·,则f′(2)=( )
A.4 B.0
C. D.5
解析:选D 原函数化简得f(x)=x,
所以f′(x)=·x,所以f′(2)=×2=5.
4.已知f(x)=xα,若f′(-1)=-2,则α的值等于( )
A.2 B.-2
C.3 D.-3
解析:选A 若α=2,则f(x)=x2,∴f′(x)=2x,
∴f′(-1)=2×(-1)=-2适合条件.故应选A.
5. 曲线y=x3在x=1处切线的倾斜角为( )
A.1 B.-
C. D.
解析:选C ∵y′=x2,∴y′|x=1=1,
∴切线的倾斜角α满足tan α=1,∵0≤α<π,∴α=.
5
6.已知f(x)=,g(x)=mx,且g′(2)=,则f′(2)=________,m=________.
解析:∵f′(x)=-,
∴f′(2)=-.
又∵g′(x)=m,∴g′(2)=m.
由g′(2)=,得m=-4.
答案:- -4
7.曲线y=-在点处的切线方程是________.
解析:因为y′=′=,
所以y′|x==4,所以切线方程是y+2=4,
即y=4x-4.
答案:y=4x-4
8.设坐标平面上的抛物线C:y=x2,过第一象限的点(a,a2)作抛物线C的切线l,则直线l与y轴的交点Q的坐标为________.
解析:显然点(a,a2)为抛物线C:y=x2上的点,
∵y′=2x,∴直线l的方程为y-a2=2a(x-a).
令x=0,得y=-a2,
∴直线l与y轴的交点的坐标为(0,-a2).
答案:(0,-a2)
9.求下列函数的导数:
(1)y=x8;(2)y=4x;(3)y=log3x;
(4)y=sin;(5)y=e2.
解:(1)y′=(x8)′=8x8-1=8x7.
(2)y′=(4x)′=4xln 4.
(3)y′=(log3x)′=.
(4)y′=(cos x)′=-sin x.
(5)y′=(e2)′=0.
10.已知P(-1,1),Q(2,4)是曲线y=x2上的两点,
(1)求过点P,Q的曲线y=x2的切线方程.
5
(2)求与直线PQ平行的曲线y=x2的切线方程.
解:(1)因为y′=2x,P(-1,1),Q(2,4)都是曲线y=x2上的点.
过P点的切线的斜率k1=y′|x=-1=-2,
过Q点的切线的斜率k2=y′|x=2=4,
过P点的切线方程:y-1=-2(x+1),
即2x+y+1=0.
过Q点的切线方程:y-4=4(x-2),
即4x-y-4=0.
(2)因为y′=2x,
直线PQ的斜率k==1,
切线的斜率k=y′|x=x0=2x0=1,
所以x0=,所以切点M,
与PQ平行的切线方程为:
y-=x-,即4x-4y-1=0.
B级——高考能力达标
1.质点沿直线运动的路程s与时间t的关系是s=,则质点在t=4时的速度为( )
A. B.
C. D.
解析:选B ∵s′=t-.∴当t=4时,
s′=·= .
2.直线y=x+b是曲线y=ln x(x>0)的一条切线,则实数b的值为( )
A.2 B.ln 2+1
C.ln 2-1 D.ln 2
解析:选C ∵y=ln x的导数y′=,
∴令=,得x=2,∴切点为(2,ln 2).
5
代入直线y=x+b,得b=ln 2-1.
3.在曲线f(x)=上切线的倾斜角为π的点的坐标为( )
A.(1,1) B.(-1,-1)
C.(-1,1) D.(1,1)或(-1,-1)
解析:选D 因为f(x)=,所以f′(x)=-,因为切线的倾斜角为π,所以切线斜率为-1,
即f′(x)=-=-1,所以x=±1,
则当x=1时,f(1)=1;
当x=-1时,f(1)=-1,则点坐标为(1,1)或(-1,-1).
4.设曲线y=xn+1(n∈N*)在点(1,1)处的切线与x轴的交点的横坐标为xn,则x1·x2·…·xn的值为( )
A. B.
C. D.1
解析:选B 对y=xn+1(n∈N*)求导得y′=(n+1)xn. 令x=1,得在点(1,1)处的切线的斜率k=n+1,∴在点(1,1)处的切线方程为y-1=(n+1)(xn-1).令y=0,得xn=,∴x1·x2·…·xn=×××…××=, 故选B.
5.已知f(x)=a2(a为常数),g(x)=ln x,若2x[f′(x)+1]-g′(x)=1,则x=________.
解析:因为f′(x)=0,g′(x)=,
所以2x[f′(x)+1]-g′(x)=2x-=1.
解得x=1或x=-,因为x>0,所以x=1.
答案:1
6.与直线2x-y-4=0平行且与曲线y=ln x相切的直线方程是________.
解析:∵直线2x-y-4=0的斜率为k=2,
又∵y′=(ln x)′=,∴=2,解得x=.
∴切点的坐标为.
5
故切线方程为y+ln 2=2.
即2x-y-1-ln 2=0.
答案:2x-y-1-ln 2=0
7.已知曲线方程为y=f(x)=x2,求过点B(3,5)且与曲线相切的直线方程.
解:设切点P的坐标为(x0,x).
∵y=x2,∴y′=2x,∴k=f′(x0)=2x0,
∴切线方程为y-x=2x0(x-x0).
将点B(3,5)代入上式,得5-x=2x0(3-x0),
即x-6x0+5=0,∴(x0-1)(x0-5)=0,
∴x0=1或x0=5,∴切点坐标为(1,1)或(5,25),
故所求切线方程为y-1=2(x-1)或y-25=10(x-5),
即2x-y-1=0或10x-y-25=0.
8.求证:双曲线xy=a2上任意一点处的切线与两坐标轴围成的三角形的面积等于常数.
证明:设P(x0,y0)为双曲线xy=a2上任一点.
∵y′=′=-.
∴过点P的切线方程为y-y0=-(x-x0).
令x=0,得y=;令y=0,得x=2x0.
则切线与两坐标轴围成的三角形的面积为
S=··|2x0|=2a2.
即双曲线xy=a2上任意一点处的切线与两坐标轴围成的三角形的面积为常数2a2.
5
相关文档
- 2016届高考数学(理)大一轮复习达标训2021-06-219页
- 2016届高考数学(理)大一轮复习达标训2021-06-215页
- 2016届高考数学(理)大一轮复习达标训2021-06-215页
- 2016届高考数学(理)大一轮复习达标训2021-06-215页
- 2016届高考数学(理)大一轮复习达标训2021-06-216页
- 2020版高考数学一轮(新课改省份专用2021-06-214页
- 2016届高考数学(理)大一轮复习达标训2021-06-216页
- 2016届高考数学(理)大一轮复习达标训2021-06-205页
- 浙江专版2019-2020学年高中数学课2021-06-204页
- 浙江专版2019-2020学年高中数学课2021-06-195页