- 54.00 KB
- 2021-06-22 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
条件概率与独立事件、二项分布、正态分布备考策略
主标题:条件概率与独立事件、二项分布、正态分布备考策略
副标题:通过考点分析高考命题方向,把握高考规律,为学生备考复习打通快速通道。
关键词:条件概率,独立事件,二项分布,正态分布,备考策略
难度:3
重要程度:4
考点一 条件概率
[例1] (1)甲、乙两地都位于长江下游,根据天气预报的记录知,一年中下雨天甲市占20%,乙市占18%,两市同时下雨占12%.则甲市为雨天,乙市也为雨天的概率为( )
A.0.6 B.0.7 C.0.8 D.0.66
(2)市场上供应的灯泡中,甲厂产品占70%,乙厂产品占30%,甲厂产品的合格率是95%,乙厂产品的合格率是80%,则从市场上买到一个是甲厂生产的合格灯泡的概率是________.
解析 (1)“甲市为雨天”记为事件A,“乙市为雨天”记为事件B,则P(A)=0.2,P(B)=0.18,P(AB)=0.12,
故P(B|A)===0.6.
(2)记A=“甲厂产品”,B=“合格产品”,则P(A)=0.7,P(B|A)=0.95.故P(AB)=P(A)P(B|A)=0.7×0.95=0.665.
[答案] (1)A (2)0.665
【变式训练】
在本例(2)中条件改为“甲厂产品的合格率是95%,其中60%为一级品”,求甲厂产品中任选一件为一级品的概率.
解:设“甲厂产品合格”为事件A,“一级品”为事件B,则甲厂产品中任一件为一级品为AB,所以P(AB)=P(A)P(B|A)=95%×60%=0.57.
【备考策略】条件概率的两种求解方法
(1)利用定义,求P(A)和P(AB),则P(B|A)=.
(2)借助古典概型概率公式,先求事件A包含的基本事件数n(A),再求事件A与事件B的交事件中包含的基本事件数n(AB),得P(B|A)=.
考点二 相互独立事件同时发生的概率
【例2】
在一场娱乐晚会上,有5位民间歌手(1至5号)登台演唱,由现场数百名观众投票选出最受欢迎歌手.各位观众须彼此独立地在选票上选3名歌手,其中观众甲是1号歌手的歌迷,他必选1号,不选2号,另在3至5号中随机选2名.观众乙和丙对5位歌手的演唱没有偏爱,因此在1至5号中选3名歌手.
(1)求观众甲选中3号歌手且观众乙未选中3号歌手的概率;
(2)X表示3号歌手得到观众甲、乙、丙的票数之和,求“X≥2”的事件概率.
思路点拨 (1)甲选择3号和乙没选择3号是相互独立事件,利用相互独立事件概率乘法可求;(2)“X≥2”表示事件“X=2”与“X=3”的和事件,根据互斥事件、相互独立事件的概率公式计算.
解 (1)设A表示事件“观众甲选中3号歌手”,B表示事件“观众乙选中3号歌手”,
则P(A)==,P(B)==.
∵事件A与B相互独立,A与相互独立.
则A·表示事件“甲选中3号歌手,且乙没选中3号歌手”.
∴P(A)=P(A)·P()=P(A)·[1-P(B)]=×=,
(2)设C表示事件“观众丙选中3号歌手”,
则P(C)==,
依题意,A,B,C相互独立,,,相互独立,且AB,AC,BC,ABC彼此互斥.
又P(X=2)=P(AB)+P(AC)+P(BC)
=××+××+××=,
P(X=3)=P(ABC)=××=,
∴P(X≥2)=P(X=2)+P(X=3)=+=.
【备考策略】(1)解答本题关键是把所求事件包含的各种情况找出来,从而把所求事件表示为几个事件的和事件.
(2)求相互独立事件同时发生的概率的方法主要有
①利用相互独立事件的概率乘法公式直接求解.
②正面计算较繁或难以入手时,可从其对立事件入手计算.
考点三 正态分布下的概率
【例3】 已知随机变量X服从正态分布N(2,σ2),且P(X<4)=0.8,则P(0
相关文档
- 高考数学专题复习教案: 随机抽样易2021-06-212页
- 高考数学专题复习教案: 数列的综合2021-06-214页
- 高考数学专题复习教案:第一章 集合2021-06-2138页
- 高考数学专题复习教案: 幂函数与二2021-06-211页
- 高考数学专题复习教案: 立体几何中2021-06-215页
- 高考数学专题复习教案: 双曲线的几2021-06-213页
- 高考数学专题复习教案: 向量的加法2021-06-212页
- 高考数学专题复习教案: 古典概型备2021-06-213页
- 高考数学专题复习教案: 同角三角函2021-06-212页
- 高考数学专题复习教案: 坐标系与参2021-06-213页