- 349.00 KB
- 2021-06-23 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
第1课时 等差数列的前n项和
1.了解等差数列前n项和公式的推导过程.(难点),2.掌握等差数列前n项和公式及其应用.(重点),3.能灵活应用等差数列前n项和的性质解题.(难点、易错点)
[基础·初探]
教材整理 等差数列的前n项和
阅读教材P39第二自然段~P39例1,完成下列问题.
1.数列的前n项和的概念
一般地,称a1+a2+…+an为数列{an}的前n项和,用Sn表示,即Sn=a1+a2+…+an.
2.等差数列的前n项和公式
已知量
首项、末项与项数
首项、公差与项数
求和公式
Sn=
Sn=na1+d
1.设Sn是等差数列{an}的前n项和,已知a2=3,a6=11,则S7等于( )
A.13 B.35 C.49 D.63
【解析】 a2+a6=a1+a7=14,
∴S7==49.
【答案】 C
2.等差数列{an}中,a1=1,d=1,则Sn=________.
【解析】 因为a1=1,d=1,
所以Sn=n+×1
7
=
==.
【答案】
3.在等差数列{an}中,S10=120,那么a1+a10=________.
【解析】 由S10==120,得a1+a10=24.
【答案】 24
4.已知数列{an}的前n项和Sn=n2+2n,则数列{an}的通项公式an=________.
【解析】 当n=1时,a1=S1=3.
当n≥2时,
an=Sn-Sn-1=n2+2n-(n-1)2-2(n-1)
=2n+1.
因为n=1时,a1=3,也满足an=2n+1,
所以an=2n+1.
【答案】 2n+1
[小组合作型]
有关等差数列的前n项和的基本运算
已知等差数列{an}中,
(1)a1=,S4=20,求S6;
(2)a1=,d=-,Sn=-15,求n及an;
(3)a1=1,an=-512,Sn=-1 022,求d.
【精彩点拨】 利用等差数列求和公式的两种形式求解.
【自主解答】 (1)S4=4a1+d=4a1+6d=2+6d=20,
∴d=3.
故S6=6a1+d=6a1+15d=3+15d=48.
7
(2)∵Sn=n·+=-15,
整理得n2-7n-60=0,
解得n=12或n=-5(舍去),
a12=+(12-1)×=-4.
(3)由Sn===-1 022,
解得n=4.
又由an=a1+(n-1)d,
即-512=1+(4-1)d,
解得d=-171.
a1,n,d为等差数列的三个基本量,an和Sn都可以用这三个基本量来表示,五个量a1,n,d,an,Sn中可知三求二.一般是通过通项公式和前n项和公式联立方程(组)求解,这种方法是解决数列问题的基本方法.在具体求解过程中,应注意已知与未知的联系及整体思想的运用.
[再练一题]
1.已知a6=10,S5=5,求a8和S10.
【解】
解得a1=-5,d=3.
∴a8=a6+2d=10+2×3=16,
S10=10a1+d=10×(-5)+5×9×3=85.
等差数列前n项和公式的实际应用
某抗洪指挥部接到预报,24小时后有一洪峰到达,为确保安全,指挥部决定在洪峰到来之前临时筑一道堤坝作为第二道防线.经计算,除现有的参战军民连续奋战外,还需调用20台同型号翻斗车,平均每辆车工作24小时.从各地紧急抽调的同型号翻斗车目前只有一辆投入使用,每隔20分钟能有一辆翻斗车到达,一共可调集25辆,那么在24小时内能否构筑成第二道防线?
【精彩点拨】 因为每隔20分钟到达一辆车,所以每辆车的工作量构成一个等差数列.工作量的总和若大于欲完成的工作量,则说明24小时内可完成第二道防线工程.
【自主解答】 从第一辆车投入工作算起各车工作时间(单位:小时)依次设为a1,
7
a2,…,a25.由题意可知,此数列为等差数列,且a1=24,公差d=-.
25辆翻斗车完成的工作量为:a1+a2+…+a25=25×24+25×12×=500,而需要完成的工作量为24×20=480.∵500>480,∴在24小时内能构筑成第二道防线.
1.本题属于与等差数列前n项和有关的应用题,其关
键在于构造合适的等差数列.
2.遇到与正整数有关的应用题时,可以考虑与数列知
识联系,建立数列模型,具体解决要注意以下两点:
(1)抓住实际问题的特征,明确是什么类型的数列模型.
(2)深入分析题意,确定是求通项公式an,或是求前
n项和Sn,还是求项数n.
[再练一题]
2.植树节某班20名同学在一段直线公路一侧植树,每人植树一棵,相邻两棵树相距10米,开始时需将树苗集中放置在某一棵树坑旁边,使每位同学从各自树坑出发前来领取树苗往返所走的路程总和最小,此最小值为________米.
【导学号:18082026】
【解析】 假设20位同学是1号到20号依次排列,使每位同学从各自树坑出发前来领取树苗往返所走的路程总和最小,则树苗需放在第10或第11号树坑旁,此时两侧的同学所走的路程分别组成以20为首项,20为公差的等差数列,故所有同学往返的总路程为S=9×20+×20+10×20+×20=2 000(米).
【答案】 2 000
[探究共研型]
等差数列的前n项和公式推导
探究1 如图222,某仓库堆放的一堆钢管,最上面的一层有4根钢管,下面的每一层都比上一层多一根,最下面的一层有9根.假设在这堆钢管旁边再倒放上同样一堆钢管,如图所示,则这样共有多少钢管?原来有多少根钢管?
图222
7
【提示】 在原来放置的钢管中,从最上面一层开始,往下每一层的钢管数分别记为a1,a2,…,a6,则数列{an}构成一个以a1=4为首项,以d=1为公差的等差数列,设此时钢管总数为S6,现再倒放上同样一堆钢管,则这堆钢管每层有a1+a6=a2+a5=a3+a4=…=a6+a1=13(根),
此时钢管总数为2S6=(a1+a6)×6=13×6=78(根),
原来钢管总数为S6=×6=39(根).
探究2 通过探究1,你能推导出等差数列{an}的求和公式吗?
【提示】 Sn=a1+a2+…+an, ①
把数列{an}各项顺序倒过来相加得
Sn=an+an-1+…+a2+a1, ②
①+②得2Sn=(a1+an)+(a2+an-1)+…+(an+a1)=n(a1+an),
则Sn=.
探究3 你能用a1,d,n表示探究2中的公式吗?该结果与Sn=有什么区别与联系.
【提示】 Sn==
=a1n+,即Sn=a1n+.
该公式是由探究2中的公式推导得出,都是用来求等差数列的前n项和,在求解时都可以“知三求一”,求Sn时,都需知a1,n,不同在于前者还需知an,后者还需知d.
(1)已知等差数列{an}中,若a1 009=1,求S2 017;
(2)已知{an},{bn}均为等差数列,其前n项和分别为Sn,Tn,且=,求.
【精彩点拨】 由等差数列的前n项和公式及通项公式列方程组求解,或结合等差数列的性质求解.
【自主解答】 (1)法一:∵a1009=a1+1008d=1,∴S2017=2017a1+d=2 017(a1+1 008d)=2017.
法二:∵a1009=,∴S2017=×2 017=2017a1009=2017.
(2)法一:=====.
7
法二:∵==,
∴设Sn=2n2+2n,Tn=n2+3n,∴a5=S5-S4=20,b5=T5-T4=12,
∴==.
1.若{an}是等差数列,则Sn=·n=na中(a中为a1与an的等差中项).
2.若{an},{bn}均为等差数列,其前n项和分别为Sn,Tn,则=.
[再练一题]
3.在等差数列{an}中.
已知a3+a15=40,求S17.
【解】 法一:∵a1+a17=a3+a15,∴S17==
==340.
法二:∵a3+a15=2a1+16d=40,∴a1+8d=20,
∴S17=17a1+d=17(a1+8d)=17×20=340.
法三:∵a3+a15=2a9=40,∴a9=20,∴S17=17a9=340.
1.等差数列{an}的前n项和为Sn,若a1=2,S3=12,则a6等于( )
A.8 B.10 C.12 D.14
【解析】 由题意知a1=2,由S3=3a1+×d=12,解得d=2,所以a6=a1+5d=2+5×2=12,故选C.
【答案】 C
2.设Sn是等差数列{an}的前n项和,若a1+a3+a5=3,则S5=( )
A.5 B.7 C.9 D.11
【解析】 法一:∵a1+a5=2a3,
∴a1+a3+a5=3a3=3,
∴a3=1,
7
∴S5==5a3=5,故选A.
法二:∵a1+a3+a5=a1+(a1+2d)+(a1+4d)=3a1+6d=3,∴a1+2d=1,
∴S5=5a1+d=5(a1+2d)=5,故选A.
【答案】 A
3.在一个等差数列中,已知a10=10,则S19=________.
【解析】 S19===19a10=190.
【答案】 190
4.记等差数列前n项和为Sn,若S2=4,S4=20,则该数列的公差d=________.
【导学号:18082027】
【解析】 法一:由
解得d=3.
法二:由S4-S2=a3+a4=a1+2d+a2+2d=S2+4d,
∴20-4=4+4d,
解得d=3.
【答案】 3
5.设Sn是等差数列{an}的前n项和,若S3=3,S6=24,求a9.
【解】 设等差数列的公差为d,则
S3=3a1+d=3a1+3d=3,即a1+d=1,
S6=6a1+d=6a1+15d=24,
即2a1+5d=8.
由解得
故a9=a1+8d=-1+8×2=15.
7
相关文档
- 高中数学必修1函数的奇偶性2021-06-235页
- 专题40 离心率的求值或取值范围问2021-06-2324页
- 高中数学必修3第1章1_3同步训练及2021-06-233页
- 浙江专版2019-2020学年高中数学课2021-06-236页
- 高中数学必修1教案:第九章直线平面2021-06-236页
- 2020年高中数学第四章计算变力所做2021-06-232页
- 广东广州市天河区普通高中2018届高2021-06-235页
- 全国高中数学联赛省级预赛模拟试题2021-06-238页
- 高中数学必修3教案:2_2_1用样本的频2021-06-234页
- 2020年高中数学第二章推理与证明22021-06-236页