- 170.00 KB
- 2021-06-23 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
第1课时 分类加法计数原理与分步乘法计数原理
学习目标:1.通过实例,能归纳总结出分类加法计数原理、分步乘法计数原理.(重点)2.正确地理解“完成一件事情”的含义,能根据具体问题的特征,选择“分类”或“分步”.(易混点)3.能利用两个原理解决一些简单的实际问题.(难点)
[自 主 预 习·探 新 知]
1.分类加法计数原理
思考:若完成一件事情有几类不同的方案,在第1类方案中有m1种不同方法,在第2类方案中有m2种不同的方法,…,在第n类方案中有mn种不同的方法,那么完成这件事共有多少种不同方法?
[提示] 共有m1+m2+…+mn种不同方法.
2.分步乘法计数原理
思考:完成一件事需要n个步骤,做第1步有m1种不同的方法,做第2步有m2种不同的方法,…,做第n步有mn种不同的方法,则完成这件事共有多少种不同的方法?
[提示] 共有m1×m2×…×mn种不同的方法.
[基础自测]
1.判断(正确的打“√”错误的打“×”)
(1)在分类加法计数原理中,两类不同方案中的方法可以相同. ( )
(2)在分类加法计数原理中,每类方案中的方法都能完成这件事. ( )
(3)在分步乘法计数原理中,每个步骤中完成这个步骤的方法是各不相同的. ( )
(4)在分步乘法计数原理中,事情是分两步完成的,其中任何一个单独的步骤都能完成这件事. ( )
[解析] (1)× 在分类加法计数原理中,分类标准是统一的,两类不同方案中的方法是不能相同的.
(2)√ 在分类加法计数原理中,是把能完成这件事的所有方法按某一标准分类的,故每类方案中的每种方法都能完成这些事.
6
(3)√ 在分步乘法计数原理中的每一步都有多种方法,而每种方法各不相同.
(4)× 因为在分步乘法计数原理中,要完成这件事需分两步,而每步都不能完成这件事,只有各步都完成了,这件事才算完成.
[答案] (1)× (2)√ (3)√ (4)×
2.从甲地到乙地有两类交通方式:坐飞机和乘轮船,其中飞机每天有3班,轮船有4班.若李先生从甲地去乙地,则不同的交通方式共有( )
【导学号:95032000】
A.3种 B.4种
C.7种 D.12种
C [由分类加法计数原理,从甲地去乙地共3+4=7(种)不同的交通方式.]
3.已知x∈{2,3,7},y∈{-3,-4,8},则x·y可表示不同的值的个数为( )
A.10个 B.6个
C.8个 D.9个
D [因为x从集合{2,3,7}中任取一个值共有3个不同的值,y从集合{-3,-4,8}中任取一个值共有3个不同的值,故x·y可表示3×3=9个不同的值.]
4.某商场共有4个门,购物者若从任意一个门进,从任意一个门出,则不同走法的种数是________.
【导学号:95032001】
16 [不同的走法可以看作是两步完成的,第一步是进门共有4种;第二步是出门,共有4种.由分步乘法计数原理知共有4×4=16(种).]
[合 作 探 究·攻 重 难]
利用分类加法计数原理解题
在所有的两位数中,个位数字比十位数字大的两位数有多少个?
【导学号:95032002】
[思路探究] 根据情况安排个位、十位上的数字.
先确定分类标准,再求出每一类的个数,最后得结论.
[解] 法一:分析个位数,可分以下几类:
个位是9,则十位可以是1,2,3,…,8中的一个,故有8个;
个位是8,则十位可以是1,2,3,…,7中的一个,故有7个;
同理,个位是7的有6个;个位是6的有5个;……;个位是2的只有1个.
由分类加法计数原理知,满足条件的两位数有
1+2+3+4+5+6+7+8=36(个).
6
法二:按十位数上的数字分别是1,2,3,4,5,6,7,8的情况分成8类,在每一类中满足题目条件的两位数分别有8个,7个,6个,5个,4个,3个,2个,1个,由分类加法计数原理知,符合题意的两位数共有
8+7+6+5+4+3+2+1=36(个).
法三:将个位比十位数字大的两位数一一写出:
12,13,14,15,16,17,18,19,
23,24,25,26,27,28,29,
34,35,36,37,38,39,
45,46,47,48,49,
56,57,58,59,
67,68,69,
78,79,
89.
共有36个符合题意的两位数.
[规律方法] 应用分类加法计数原理解题时要注意以下三点:
(1)明确题目中所指的“完成一件事”指的是什么事,怎样才算是完成这件事.
(2)完成这件事的n类办法中的各种方法是互不相同的,无论哪类办法中的哪种方法都可以单独完成这件事.
(3)确立恰当的分类标准,这个“标准”必须满足:①完成这件事情的任何一种方法必须属于其中的一类;②不同两类中的两种方法不能相同,即不重复,无遗漏.
[跟踪训练]
1.本例中条件不变,求个位数字小于十位数字且为偶数的两位数的个数.
[解] 当个位数字是8时,十位数字取9,只有1个.
当个位数字是6时,十位数字可取7,8,9,共3个.
当个位数字是4时,十位数字可取5,6,7,8,9,共5个.
同理可知,当个位数字是2时,共7个.
当个位数字是0时,共9个.
由分类加法计数原理知,符合条件的数共有1+3+5+7+9=25(个).
利用分步乘法计数原理解题
已知a∈{1,2,3},b∈{4,5,6,7},r∈{8,9},则方程(x-a)2+(y-b)2=r2可表示多少个不同的圆?
【导学号:95032003】
[思路探究] 确定一个圆的方程需要分别确定出圆心的横坐标、纵坐标、半径,可以用分步乘法计数原理解决.
6
[解] 完成表示不同的圆这件事,可以分为三步:
第一步:确定a有3种不同的选取方法;
第二步:确定b有4种不同的选取方法;
第三步:确定r有2种不同的选取方法;
由分步乘法计数原理,方程(x-a)2+(y-b)2=r2可表示不同的圆共有3×4×2=24(个).
[规律方法]
1.应用分步乘法计数原理时,完成这件事情要分几个步骤,只有每个步骤都完成了,才算完成这件事情,每个步骤缺一不可.
2.利用分步乘法计数原理解题的一般思路
(1)分步:将完成这件事的过程分成若干步;
(2)计数:求出每一步中的方法数;
(3)结论:将每一步中的方法数相乘得最终结果.
[跟踪训练]
2.张涛大学毕业参加工作后,把每月工资中结余的钱分为两部分,其中一部分用来定期储蓄,另一部分用来购买国债.人民币储蓄可以从一年期、二年期两种中选择一种,购买国债则可以从一年期、二年期和三年期中选择一种.问:张涛共有多少种不同的理财方式?
[解] 由题意知,张涛要完成理财目标应分步完成.
第1步,将一部分钱用来定期储蓄,从一年期和二年期中任意选择一种理财方式,有2种方式;
第2步,用另一部分钱购买国债,从一年期、二年期和三年期三种国债中任意选择一种理财方式,有3种方式.
由分步乘法计数原理得张涛共有2×3=6种不同的理财方式.
两个原理的综合应用
[探究问题]
如何区分一个问题是“分类”还是“分步”?
[提示] 如果完成这件事,可以分几种情况,每种情况中任何一种方法都能完成任务,则是分类;而从其中一种情况中任取一种方法只能完成一部分任务,且只有依次完成各种情况,才能完成这件事,则是分步.
一个袋子里装有10张不同的中国移动手机卡,另一个袋子里装有12张不同的中国联通手机卡.
(1)某人要从两个袋子中任取一张手机卡供自己使用,共有多少种不同的取法.
6
(2)某人手机是双卡双待机,想得到一张移动卡和一张联通卡供自己今后使用,问一共有多少种不同的取法?
【导学号:95032004】
[思路探究]
[解] (1)从两个袋子中任取一张卡有两类情况:
第一类:从第一个袋子中取一张移动手机卡,共有10种取法;
第二类:从第二个袋子中取一张联通手机卡,共有12种取法.
根据分类加法计数原理,共有10+12=22种取法.
(2)想得到一张移动卡和一张联通卡可分两步进行:
第一步,从第一个袋子中任取一张移动手机卡,共有10种取法.
第二步,从第二个袋子中任取一张联通手机卡,共有12种取法.
根据分步乘法计数原理,共有10×12=120种取法.
[规律方法] 对于两个计数原理的综合应用问题,一般是先分类再分步,分类时要设计好标准,设计好分类方案,防止重复和遗漏;分步时要注意步与步之间的连续性,同时应合理设计步骤的顺序,使各步互不干扰,也可以根据题意恰当合理地画出示意图或者列出表格,使问题的实质直观地显现出来,从而便于我们解题.
[跟踪训练]
3.某公园休息处东面有8个空闲的凳子,西面有6个空闲的凳子,小明与爸爸来这里休息.
(1)若小明爸爸任选一个凳子坐下(小明不坐),有几种坐法?
(2)若小明与爸爸分别就坐,有多少种坐法?
[解] (1)小明爸爸选凳子可以分两类:
第一类,选东面的空闲凳子,有8种坐法;
第二类,选西面的空闲凳子,有6种坐法.
根据分类加法计数原理,小明爸爸共有8+6=14种坐法.
(2)小明与爸爸分别就坐,可以分两步完成:
第一步,小明先就坐,从东西面共8+6=14个凳子中选一个坐下,共有14种坐法;(小明坐下后,空闲凳子数变成13)第二步,小明爸爸再就坐,从东西面共13个空闲凳子中选一个坐下,共13种坐法.
由分步乘法计数原理,小明与爸爸分别就坐共有14×13=182种坐法.
[当 堂 达 标·固 双 基]
1.某学生去书店,发现2本好书,决定至少买其中一本,则购买方式共有( )
6
A.1种 B.2种
C.3种 D.4种
C [分两类:买1本或买2本书,各类购买方式依次有2种、1种,故购买方式共有2+1=3种.故选C.]
2.现有4件不同款式的上衣和3条不同颜色的长裤,如果一条长裤与一件上衣配成一套,则不同的配法种数为( )
【导学号:95032005】
A.7 B.12
C.64 D.81
B [先从4件上衣中任取一件共4种选法,再从3条长裤中任选一条共3种选法,由分步乘法计数原理,上衣与长裤配成一套共4×3=12(种)不同配法.故选B.]
3.从A地到B地,可乘汽车、火车、轮船三种交通工具,如果一天内汽车发3次,火车发4次,轮船发2次,那么一天内乘坐这三种交通工具的不同走法数为( )
A.1+1+1=3 B.3+4+2=9
C.3×4×2=24 D.以上都不对
B [分三类:第一类,乘汽车,从3次中选1次有3种走法;第二类,乘火车,从4次中选1次有4种走法;第三类,乘轮船,从2次中选1次有2种走法.所以,共有3+4+2=9种不同的走法.]
4.十字路口来往的车辆,如果不允许回头,不同的行车路线有________条.
【导学号:95032006】
12 [经过一次十字路口可分两步:第一步确定入口,共有4种选法;第二步,确定出口,从剩余3个路口任选一个共3种,由分步乘法计数原理知不同的路线有4×3=12条.]
5.现有5幅不同的国画,2幅不同的油画,7幅不同的水彩画.
(1)从这些国画、油画、水彩画中各选一幅布置房间,有几种不同的选法?
(2)从这些画中选出两幅不同种类的画布置房间,有几种不同的选法?
[解] (1)分为三步:国画、油画、水彩画各有5种、2种、7种不同的选法,根据分步乘法计数原理,共有5×2×7=70种不同的选法.
(2)分为三类:
第一类是一幅选自国画,一幅选自油画,由分步乘法计数原理知,有5×2=10种不同的选法.
第二类是一幅选自国画,一幅选自水彩画,有5×7=35种不同的选法.
第三类是一幅选自油画,一幅选自水彩画,有2×7=14种不同的选法.
所以有10+35+14=59种不同的选法.
6
相关文档
- 2020高中数学 第2章 函数概念与基2021-06-233页
- 高中数学分章节训练试题:11三角恒等2021-06-234页
- 高中数学必修1示范教案(1_1 方程的2021-06-236页
- 名师解读高考真题系列-高中数学(理数2021-06-236页
- 高中数学 第三章 章末综合训练 新2021-06-233页
- 2018-2019学年江西省南昌市八一中2021-06-2310页
- 2020年高中数学第三讲柯西不等式与2021-06-237页
- 2020高中数学第二章函数22021-06-236页
- 高中数学选修2-2课时练习第四章 1_2021-06-2310页
- 2020高中数学 第2章 平面解析几何2021-06-235页