• 188.00 KB
  • 2021-06-23 发布

2020年高中数学第二章平面

  • 5页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
‎2.1.1‎‎ 平面 ‎[课时作业]‎ ‎[A组 基础巩固]‎ ‎1.平行六面体ABCDA1B‎1C1D1中,既与AB共面又与CC1共面的棱的条数为(  )‎ A.3   B.‎4 ‎    C.5    D.6‎ 解析:依题意,与AB和CC1都相交的棱有BC;与AB相交且与CC1平行的棱有AA1,BB1;与AB平行且与CC1相交的棱有CD,C1D1,故符合条件的棱共有5条.‎ 答案:C ‎2.下列命题:①圆上三点可以确定一个平面;②圆心和圆上两点可以确定一个平面;‎ ‎③四条平行线不能确定五个平面;④不共线的五点,可以确定五个平面,必有三点共线.其中假命题的个数为(  )‎ A.1 B.‎2 C.3 D.4‎ 解析:由公理可知,①显然正确;若圆上两点为直径的两个端点,则圆心和圆上两点不能确定一个平面,②不正确;四条平行线只能确定一个,四个或六个平面,③正确;④不共线的五点,可以确定五个平面,必有三点共线,不正确,比如四棱锥.故选B.‎ 答案:B ‎3.在空间四边形ABCD的边AB,BC,CD,DA上分别取点E,F,G,H,若EF与HG交于点M,则(  )‎ A.M一定在直线AC上 B.M一定在直线BD上 C.M可能在直线AC上,也可能在直线BD上 D.M不在直线AC上,也不在直线BD上 解析:由题意得EF在平面ABC内,HG在平面ACD内,∴EF与HG交于点M一定落在面ABC与面ACD的交线AC上.‎ 答案:A ‎4.已知下列三个命题:①若点P不在平面α内,A,B,C三点都在平面α内,则P,A,B,C四点不在同一平面内;②两两相交的三条直线在同一平面内;③两组对边分别相等的四边形是平行四边形.其中真命题的个数是(  )‎ A.0 B.‎1 ‎‎ C.2 D.3‎ 解析:当A,B,C三点都在平面α内,且三点共线时,P,A,B,C四点在同一个平面内,故①不是真命题;三棱锥的三条侧棱所在的直线两两相交,但三条直线不在同一平面内,故②不是真命题;两组对边分别相等的四边形也可能是空间四边形,故③不是真命题.‎ 答案:A 5‎ ‎5.用一个平面截正方体所得的截面图形不可能是(  )‎ A.六边形 B.五边形 C.菱形 D.直角三角形 解析:可用排除法,正方体的截面图形可能是六边形、五边形、菱形,故选D.‎ 答案:D ‎6.如图所示,平面ABEF记作平面α,平面ABCD记作平面β,根据图形填写:‎ ‎(1)A∈α,B________α,E________α,C________α,D________α;‎ ‎(2)α∩β=________;‎ ‎(3)A∈β,B________β,C________β,D________β,E________β,F________β;‎ ‎(4)AB________α,AB________β,CD________α,CD________β,BF________α,BF________β.‎ 答案:(1)∈ ∈ ∉ ∉ (2)AB (3)∈ ∈ ∈ ∉ ∉ (4)⊂ ⊂ ⊄ ⊂ ⊂ ⊄‎ ‎7.如图,已知正方体ABCDA1B‎1C1D1.‎ ‎(1)AC∩BD=____________;‎ ‎(2)平面AB1∩平面A‎1C1=________;‎ ‎(3)A1B1∩B1B∩B‎1C1=________.‎ 解析:由图形可知,AC∩BD=O,‎ 平面AB1∩平面A‎1C1=A1B1,‎ A1B1∩B1B∩B‎1C1=B1.‎ 答案:(1)O (2)A1B1 (3)B1‎ ‎8.下列说法:‎ ‎①空间三条直线两两平行,则三条直线在同一个平面内;‎ ‎②空间三条直线两两相交,则三条直线在同一个平面内;‎ ‎③空间四点E、F、G、H在同一平面内,则直线EF与GH可能平行,也可能相交.‎ 其中正确的序号是________.‎ 解析:三棱柱的三条侧棱两两平行,但三条侧棱所在直线不在同一平面内,故①错;若三条直线交于同一点,则三条直线可能不在同一平面内,故②错;同一平面内的两条直线不平行,就相交,故③正确.‎ 答案:③‎ 5‎ ‎9.如图,在正方体ABCDA1B‎1C1D1中,判断下列命题是否正确,并说明理由.‎ ‎(1)由点A,O,C可以确定一个平面;‎ ‎(2)由点A,C1,B1确定的平面为平面ADC1B1.‎ 解析:(1)不正确.因为点A,O,C在同一条直线上,故不能确定一个平面.‎ ‎(2)正确.因为点A,B1,C1不共线,所以可确定一个平面.又因为AD∥B‎1C1,所以点D∈平面AB‎1C1.所以由点A,C1,B1确定的平面为平面ADC1B1.‎ ‎10.在正方体ABCDA1B‎1C1D1中,‎ ‎(1)点B,C1,D是否在同一平面内?‎ ‎(2)画出平面AC1与平面BC1D的交线,平面ACD1与平面BC1D的交线.‎ 解析:(1)∵点B,C1,D不共线,由公理2可知,点B,C1,D可确定平面BC1D,∴点B,C1,D在同一平面内.‎ ‎(2)如图,连接AC,BD交于点O;连接DC1,CD1交于点E;连接OE,OC1.‎ ‎∵AC∩BD=O,D‎1C∩DC1=E,O∈平面AC1,O∈平面BC1D,且C1∈平面AC1,C1∈平面BC1D,‎ ‎∴平面AC1∩平面BC1D=OC1.‎ 同理,平面ACD1∩平面BC1D=OE.‎ ‎[B组 能力提升]‎ ‎1.正方体ABCDA1B‎1C1D1中,P、Q、R分别是AB、AD、B‎1C1的中点.那么,正方体的过P、Q、R的截面图形是(  )‎ A.三角形 B.四边形 C.五边形 D.六边形 解析:如图所示,作GR∥PQ交C1D1于G,延长QP与CB延长线交于M,连接MR交BB1于E,连接PE.‎ 5‎ 同理延长PQ交CD延长线于N,‎ 连接NG交DD1于F,连接QF.‎ ‎∴截面PQFGRE为六边形.‎ 故选D.‎ 答案:D ‎2.不共面的四个定点到平面α的距离都相等,这样的平面α共有(  )‎ A.3个 B.4个 C.6个 D.7个 解析:把不共面的四个定点看作四面体的四个顶点,平面α可以分为两类:‎ 第一类:如图(1)所示,四个定点分布在α的一侧一个,另一侧三个,此类中α共有4个.‎ 第二类:如图(2)所示,四个定点分布在α的两侧各2个,此类中α共3个.‎ 综上α共有4+3=7(个).‎ 答案:D ‎3.如图所示,AB∩α=P,CD∩α=P,A,D与B,C分别在平面α的两侧,AC∩α=Q,BD∩α=R.‎ 求证:P,Q,R三点共线.‎ 证明:∵AB∩α=P,CD∩α=P,‎ ‎∴AB∩CD=P.‎ ‎∴AB,CD可确定一个平面,设为β.‎ ‎∵A∈AB,C∈CD,B∈AB,D∈CD,‎ ‎∴A∈β,C∈β,B∈β,D∈β.‎ ‎∴AC⊂β,BD⊂β,平面α,β相交.‎ ‎∵AB∩α=P,AC∩α=Q,BD∩α=R,‎ ‎∴P,Q,R三点是平面α与平面β的公共点,‎ ‎∴P,Q,R都在α与β的交线上,故P,Q,R三点共线.‎ ‎4.如图,在直四棱柱ABCDA1B‎1C1D1中,AD>BC,P,Q,M,N分别为AA1,BB1,CC1,DD1上的点,设PQ与NM的交点为S,AB与DC的交点为R,A1B1与D‎1C1的交点为G.求证:R,S,G三点共线.‎ 5‎ 证明:因为P,Q,M,N分别为AA1,BB1,CC1,DD1上的点,PQ∩MN=S,‎ 所以S∈MN,MN⊂平面CC1D1D,S∈PQ,PQ⊂平面AA1B1B,‎ 所以S∈平面CC1D1D,且S∈平面AA1B1B,‎ 所以S在平面AA1B1B与平面CC1D1D的交线上.‎ 同理可证:R,G也在平面AA1B1B与平面CC1D1D的交线上,‎ 所以R,S,G三点共线.‎ 5‎