- 118.46 KB
- 2021-06-24 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
第3讲 直线与圆、圆与圆的位置关系
一、选择题
1.已知集合A={(x,y)|x,y为实数,且x2+y2=1},B={(x,y)|x,y为实数,且x+y=1},则A∩B的元素个数为( ).
A.4 B.3 C.2 D.1
解析 法一 (直接法)集合A表示圆,集合B表
示一条直线,又圆心(0,0)到直线x+y=1的距离
d==<1=r,所以直线与圆相交,故选C.
法二 (数形结合法)画图可得,故选C.
答案 C
2.若直线x-y+1=0与圆(x-a)2+y2=2有公共点,则实数a的取值范围是 ( ).
A.[-3,-1] B.[-1,3]
C.[-3,1] D.(-∞,-3]∪[1,+∞)
解析 由题意可得,圆的圆心为(a,0),半径为,
∴≤,即|a+1|≤2,解得-3≤a≤1.
答案 C
3.若圆(x-a)2+(y-b)2=b2+1始终平分圆(x+1)2+(y+1)2=4的周长,则a,b满足的关系是( )
A.a2+2a+2b-3=0
B.a2+b2+2a+2b+5=0
C.a2+2a+2b+5=0
D.a2-2a-2b+5=0
解析 即两圆的公共弦必过(x+1)2+(y+1)2=4的圆心,
两圆相减得相交弦的方程为-2(a+1)x-2(b+1)y+a2+1=0,
将圆心坐标(-1,-1)代入可得a2+2a+2b+5=0.
答案 C
4.若圆C1:x2+y2+2ax+a2-4=0(a∈R)与圆C2:x2+y2-2by-1+b2=0(b∈R)恰有三条切线,则a+b的最大值为 ( ).
A.-3 B.-3 C.3 D.3
解析 易知圆C1的圆心为C1(-a,0),半径为r1=2;
圆C2的圆心为C2(0,b),半径为r2=1.
∵两圆恰有三条切线,∴两圆外切,
∴|C1C2|=r1+r2,即a2+b2=9.∵2≤,
∴a+b≤3(当且仅当a=b=时取“=”),
∴a+b的最大值为3.
答案 D
5.若曲线C1:x2+y2-2x=0与曲线C2:y(y-mx-m)=0有四个不同的交点,则实数m的取值范围是 ( ).
A. B.∪
C. D.∪
解析 C1:(x-1)2+y2=1,C2:y=0或y=mx+m=m(x+1).
当m=0时,C2:y=0,此时C1与C2显然只有两个交点;
当m≠0时,要满足题意,需圆(x-1)2+y2=1与直线y=m(x+1)有两交点,当圆与直线相切时,m=±,即直线处于两切线之间时满足题意,
则-2,b>2).
(1)求证:(a-2)(b-2)=2;
(2)求线段AB中点的轨迹方程;
(3)求△AOB面积的最小值.
解 (1)证明:圆的标准方程是(x-1)2+(y-1)2=1,设直线方程为+=1,即bx+ay-ab=0,圆心到该直线的距离d==1,
即a2+b2+a2b2+2ab-2a2b-2ab2=a2+b2,即a2b2+2ab-2a2b-2ab2=0,
即ab+2-2a-2b=0,即(a-2)(b-2)=2.
(2)设AB中点M(x,y),则a=2x,b=2y,代入(a-2)(b-2)=2,
得(x-1)(y-1)=(x>1,y>1).
(3)由(a-2)(b-2)=2得ab+2=2(a+b)≥4,
解得≥2+(舍去≤2-),
当且仅当a=b时,ab取最小值6+4,
所以△AOB面积的最小值是3+2.
13.设直线l的方程为y=kx+b(其中k的值与b无关),圆M的方程为x2+y2-2x-4=0.
(1)如果不论k取何值,直线l与圆M总有两个不同的交点,求b的取值范围;
(2)b=1时,l与圆交于A,B两点,求|AB|的最大值和最小值.
解 圆M的标准方程为(x-1)2+y2=5,
∴圆心M的坐标为(1,0),半径为r=.
(1)∵不论k取何值,直线l总过点P(0,b),
∴欲使l与圆M总有两个不同的交点,必须且只需点P在圆M的内部,即|MP|<,即1+b2<5,
∴-2
相关文档
- 高考数学专题复习练习:考点规范练472021-06-247页
- 高考数学专题复习练习:7-1 专项基2021-06-245页
- 高考数学专题复习练习:第十章 10_22021-06-2412页
- 高考数学专题复习练习第3讲 空间2021-06-247页
- 高考数学专题复习练习第十三章 第2021-06-244页
- 高考数学专题复习练习第三章 三角2021-06-2410页
- 高考数学专题复习练习:9-8 专项基2021-06-248页
- 高考数学专题复习练习:12-5 专项基2021-06-247页
- 高考数学专题复习练习:第二章 2_5分2021-06-2414页
- 高考数学专题复习练习:第十一章 11_2021-06-2416页