- 364.00 KB
- 2021-06-30 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
第3节 导数与函数的极值、最值
考试要求 1.了解函数在某点取得极值的必要条件和充分条件;2.会用导数求函数的极大值、极小值(其中多项式函数不超过三次);3.会求闭区间上函数的最大值、最小值(其中多项式函数不超过三次).
知 识 梳 理
1.函数的极值与导数
(1)判断f(x0)是极值的方法
一般地,当函数f(x)在点x0处连续且f′(x0)=0,
①如果在x0附近的左侧f′(x)>0,右侧f′(x)<0,那么f(x0)是极大值;
②如果在x0附近的左侧f′(x)≤0,右侧f′(x)≥0,那么f(x0)是极小值.
(2)求可导函数极值的步骤
①求f′(x);
②求方程f′(x)=0的根;
③检查f′(x)在方程f′(x)=0的根的左右两侧的符号.如果左正右负,那么f(x)在这个根处取得极大值;如果左负右正,那么f(x)在这个根处取得极小值.
2.函数的最值与导数
(1)函数f(x)在[a,b]上有最值的条件
如果在区间[a,b]上函数y=f(x)的图象是连续不断的曲线,那么它必有最大值和最小值.
(2)设函数f(x)在[a,b]上连续且在(a,b)内可导,求f(x)在[a,b]上的最大值和最小值的步骤如下:
①求f(x)在(a,b)内的极值;
②将f(x)的各极值与f(a),f(b)比较,其中最大的一个是最大值,最小的一个是最小值.
[常用结论与易错提醒]
1.若函数f(x)的图象连续不断,则f(x)在[a,b]内一定有最值.
2.若函数f(x)在[a,b]内是单调函数,则f(x)一定在区间端点处取得最值.
3.若函数f(x)在开区间(a,b)内只有一个极值点,则相应的极值点一定是函数的最值点.
4.求函数单调区间与函数极值时要养成列表的习惯,可使问题直观且有条理,减少失分的可能.
5.求函数最值时,不可想当然地认为极值点就是最值点,要通过认真比较才能下结论.
诊 断 自 测
1.判断下列说法的正误.
(1)函数在某区间上或定义域内极大值是唯一的.( )
(2)函数的极大值不一定比极小值大.( )
(3)对可导函数f(x),f′(x0)=0是x0为极值点的充要条件.( )
(4)函数的最大值不一定是极大值,函数的最小值也不一定是极小值.( )
解析 (1)函数在某区间上或定义域内的极大值不一定唯一;(3)x0为f(x)的极值点的充要条件是f′(x0)=0,且x0两侧导数符号异号.
答案 (1)× (2)√ (3)× (4)√
2.(选修2-2P32A4改编)如图是f(x)的导函数f′(x)的图象,则f(x)的极小值点的个数为( )
A.1 B.2
C.3 D.4
解析 由题意知在x=-1处f′(-1)=0,且其左右两侧导数符号为左负右正.
答案 A
3.函数f(x)=-x3+3x+1有( )
A.极小值-1,极大值1 B.极小值-2,极大值3
C.极小值-2,极大值2 D.极小值-1,极大值3
解析 因为f(x)=-x3+3x+1,故有y′=-3x2+3,令y′=-3x2+3=0,解得x=±1,于是,当x变化时,f′(x),f(x)的变化情况如下表:
x
(-∞,-1)
-1
(-1,1)
1
(1,+∞)
f′(x)
-
0
+
0
-
f(x)
极小值
极大值
所以f(x)的极小值为f(-1)=-1,f(x)的极大值为f(1)=3.
答案 D
4.函数f(x)=ln x-ax在x=1处有极值,则常数a=________.
解析 ∵f′(x)=-a,∴f′(1)=1-a=0,∴a=1,经检验符合题意.
答案 1
5.已知函数f(x)=x2+(a+4)x-2ln x在区间(1,2)上存在最值,则实数a的取值范围是________.
解析 ∵f′(x)=3x+(a+4)-=,故可将题意等价的转化为f′(1)·f′(2)<0,即(a+5)(a+9)<0,解得-90,f(x)单调递增,则f(x)min=f=-.
答案 xln x -
考点一 用导数解决函数的极值问题
【例1】 求下列函数的极值:
(1)f(x)=x2-2x-4ln x;
(2)f(x)=ax3-3x2+1-(a∈R且a≠0).
解 (1)f(x)的定义域为(0,+∞),f′(x)=2x-2-=,
令f′(x)=0得x=2或-1(舍).
随着x的变化,f′(x)与f(x)的变化情况如下表:
x
(0,2)
2
(2,+∞)
f′(x)
-
0
+
f(x)
极小值
∴f(x)有极小值f(2)=-4ln 2,无极大值.
(2)由题设知a≠0,f′(x)=3ax2-6x=3ax.
令f′(x)=0得x=0或.
当a>0时,随着x的变化,f′(x)与f(x)的变化情况如下表:
x
(-∞,0)
0
f′(x)
+
0
-
0
+
f(x)
极大值
极小值
∴f(x)极大值=f(0)=1-,f(x)极小值=f=--+1.
当a<0时,随着x的变化,f′(x)与f(x)的变化情况如下表:
x
0
(0,+∞)
f′(x)
-
0
+
0
-
f(x)
极小值
极大值
∴f(x)极大值=f(0)=1-,f(x)极小值=f=--+1.
综上,f(x)极大值=f(0)=1-,f(x)极小值=f=--+1.
规律方法 函数极值的两类热点问题
(1)求函数f(x)极值这类问题的一般解题步骤为:
①确定函数的定义域;②求导数f′(x);③解方程f′(x)=0,求出函数定义域内的所有根;④列表检验f′(x)在f′(x)=0的根x0左右两侧值的符号,如果左正右负,那么f(x)在x0处取极大值,如果左负右正,那么f(x)在x0处取极小值.
(2)由函数极值求参数的值或范围.
讨论极值点有无(个数)问题,转化为讨论f′(x)=0根的有无(个数).然后由已知条件列出方程或不等式求出参数的值或范围,特别注意:极值点处的导数为0,而导数为0的点不一定是极值点,要检验导数为0的点两侧导数是否异号.
【训练1】 (1)设函数f(x)=[ax2-(4a+1)x+4a+3]ex.若f(x)在x=2处取得极小值,求a的取值范围.
(2)设函数f(x)=a-ln x,a∈R.若f(x)有极小值2,求a.
解 (1)因为f(x)=[ax2-(4a+1)x+4a+3]ex,
所以f′(x)=[ax2-(2a+1)x+2]ex.
若a>,则当x∈时,f′(x)<0;
当x∈(2,+∞)时,f′(x)>0.
所以f(x)在x=2处取得极小值.
若a≤,则当x∈(0,2)时,x-2<0,ax-1≤x-1<0,所以f′(x)>0.
所以2不是f(x)的极小值点.
综上可知,a的取值范围是.
(2)f(x)定义域为(0,+∞),f′(x)=-=.
①当a≤0时,f′(x)<0,
此时f(x)在(0,+∞)上单调递减,所以不存在极小值.
②当a>0时,令f′(x)=0可得x=,
列表可得
x
f′(x)
-
0
+
f(x)
极小值
所以f(x)在上单调递减,在上单调递增,
所以极小值为f=2-ln,所以2-ln=2⇒a=2.
考点二 用导数解决函数的最值问题
【例2】 已知函数f(x)=.
(1)求函数f(x)的导函数f′(x);
(2)求f(x)在(0,1]上的取值范围.
解 (1)因为()′=,(ln x)′=,
所以f′(x)=
=
=
=.
(2)因为x∈(0,1],所以由f′(x)==0,得x=e-3.
所以当x∈(0,e-3)时,f′(x)<0,f(x)单调递减;
当x∈(e-3,1]时,f′(x)>0,f(x)单调递增.
所以f(x)min=f(e-3)=-.
又f(1)=0,当x∈(0,e-3)时,f(e-3)0.
(1)记f(x)的极小值为g(a),求g(a)的最大值;
(2)若对任意实数x,恒有f(x)≥0,求f(a)的取值范围.
解 (1)函数f(x)的定义域是(-∞,+∞),f′(x)=ex-a.
令f′(x)=0,得x=ln a,
易知当x∈(ln a,+∞)时,f′(x)>0,当x∈(-∞,ln a)时,f′(x)<0,
所以函数f(x)在x=ln a处取极小值,g(a)=f(x)极小值=f(ln a)=eln a-aln a=a-aln a.
g′(a)=1-(1+ln a)=-ln a,
当00,g(a)在(0,1)上单调递增;
当a>1时,g′(a)<0,g(a)在(1,+∞)上单调递减.
所以a=1是函数g(a)在(0,+∞)上的极大值点,也是最大值点,所以g(a)max=g(1)=1.
(2)显然,当x≤0时,ex-ax≥0(a>0)恒成立.
当x>0时,由f(x)≥0,即ex-ax≥0,得a≤.
令h(x)=,x∈(0,+∞),
则h′(x)==,
当01时,h′(x)>0,
故h(x)的最小值为h(1)=e,所以a≤e,
故实数a的取值范围是(0,e].
f(a)=ea-a2,a∈(0,e],f′(a)=ea-2a,
易知ea-2a≥0对a∈(0,e]恒成立,
故f(a)在(0,e]上单调递增,
所以f(0)=10,
则f′(x)有2个不同的零点,设为x1,x2(x10.令f′(x)>0,得x>1;令f′(x)<0,得01时,f′(x)>0,
当-20,即a2-3a-18>0,
∴a>6或a<-3.
答案 B
6.若函数f(x)=x3+x2-在区间(a,a+5)上存在最小值,则实数a的取值范围是( )
A.[-5,0) B.(-5,0)
C.[-3,0) D.(-3,0)
解析 由题意,f′(x)=x2+2x=x(x+2),故f(x)在(-∞,-2),(0,+∞)上是增函数,在(-2,0)上是减函数,作出其图象如图所示.
令x3+x2-=-得,x=0或x=-3,则结合图象可知,解得a∈[-3,0),故选C.
答案 C
二、填空题
7.函数f(x)=x2e-x的极大值为__________,极小值为________.
解析 f(x)的定义域为(-∞,+∞),f′(x)=-e-xx(x-2).
当x∈(-∞,0)或x∈(2,+∞)时,f′(x)<0;
当x∈(0,2)时,f′(x)>0.
所以f(x)在(-∞,0),(2,+∞)上单调递减,在(0,2)上单调递增.
故当x=0时,f(x)取得极小值,极小值为f(0)=0;当x=2时,f(x)取得极大值,极大值为f(2)=4e-2.
答案 4e-2 0
8.已知函数f(x)=ln x-(m∈R)在区间[1,e]上取得最小值4,则m=________.
解析 f′(x)=+=,若m≥0,f′(x)>0,f(x)在[1,e]上为增函数,有f(x)min=f(1)=-m=4,m=-4,舍去.若m<0,令f′(x)=0,则x=-m,且当x<-m时,f′(x)<0,f(x)单调递减,当x>-m时,f′(x)>0,f(x)单调递增.若-m≤1,即m≥-1时,f(x)min=f(1)=-m≤1,不可能等于4;若1<-m≤e,即-e≤m<-1时,f(x)min=f(-m)=ln(-m)+1,令ln(-m)+1=4,得m=-e3∉[-e,-1);若-m>e,即m<-e时,f(x)min=f(e)=1-,令1-=4,得m=-3e,符合题意.综上所述,m=-3e.
答案 -3e
9.(2020·浙江名师预测卷三)可导函数的凹凸性与其导数的单调性有关,如果函数的导函数在某个区间上单调递增,那么在这个区间上函数是向下凹的,反之则是向上凸的,曲线上凹凸性的分界点称为曲线的拐点,则函数f(x)=-x2+1的极大值点为________,拐点为________.
解析 由题意可知f′(x)=x2-2x=x(x-2),故函数f(x)在(-∞,0)上单调递增,在(0,2)上单调递减,在(2,+∞)上单调递增,故其极大值在x=0处取到,所以f(x)的极大值点为x=0,由f′(x)在(-∞,1)上单调递减,在(1,+∞)上单调递增,所以其拐点为.
答案 x=0
10.设函数f(x)=
(1)若a=0,则f(x)的最大值为________;
(2)若f(x)无最大值,则实数a的取值范围是________.
解析 (1)当a=0时,f(x)=
若x≤0,则f′(x)=3x2-3=3(x2-1).
由f′(x)>0得x<-1,由f′(x)<0得-1<x≤0.
∴f(x)在(-∞,-1)上单调递增;在(-1,0)上单调递减,∴当x≤0时,f(x)≤f(-1)=2.
若x>0,则f(x)=-2x单调递减,
所以f(x)<f(0)=0.
所以f(x)最大值为2.
(2)函数y=x3-3x与y=-2x的图象如图.
显然当a≥-1时,f(x)有最大值,为2与a3-3a中较大的值.
当a<-1时,y=-2x在x>a时无最大值,且-2a>2.
所以a<-1.
答案 (1)2 (2)(-∞,-1)
三、解答题
11.已知函数f(x)=ex·(x2+ax+1),a∈R(e为自然对数的底数).
(1)若x=e是f(x)的极值点,求实数a的值;
(2)求f(x)的单调递增区间.
解 (1)f′(x)=ex·[x2+(a+2)x+a+1]
=ex(x+1)(x+a+1),
由f′(e)=0,得a=-e-1,此时x=e是f(x)的极小值点.
(2)由f′(x)=0,得x=-1或x=-a-1.
①当a=0时,-a-1=-1,
f(x)的单调递增区间是(-∞,+∞);
②当a<0时,-a-1>-1,
f(x)的单调递增区间是(-∞,-1),(-a-1,+∞);
③当a>0时,-a-1<-1,
f(x)的单调递增区间是(-∞,-a-1),(-1,+∞).
12.(2019·北京卷)已知函数f(x)=x3-x2+x.
(1)求曲线y=f(x)的斜率为1的切线方程;
(2)当x∈[-2,4]时,求证:x-6≤f(x)≤x.
(3)设F(x)=|f(x)-(x+a)|(a∈R),记F(x)在区间[-2,4]上的最大值为M(a).当M(a)最小时,求a的值.
(1)解 由f(x)=x3-x2+x得f′(x)=x2-2x+1.
令f′(x)=1,即x2-2x+1=1,得x=0或x=.
又f(0)=0,f=,
所以曲线y=f(x)的斜率为1的切线方程是y=x与y-=x-,即y=x与y=x-.
(2)证明 令g(x)=f(x)-x,x∈[-2,4].
则g(x)=x3-x2,g′(x)=x2-2x,x∈[-2,4].
令g′(x)=0得x=0或x=.
当x变化时,g′(x),g(x)的变化情况如下:
x
-2
(-2,0)
0
4
g′(x)
+
0
-
0
+
g(x)
-6
0
-
0
所以g(x)的最小值为-6,最大值为0.
故-6≤g(x)≤0,即x-6≤f(x)≤x.
(3)解 由(2)知,
当a<-3时,M(a)=F(0)=|g(0)-a|=-a>3;
当a>-3时,M(a)=F(-2)=|g(-2)-a|=6+a>3;
当a=-3时,M(a)=3;
综上,当M(a)最小时,a=-3.
能力提升题组
13.当x∈[1,4]时,不等式0≤ax3+bx2+4a≤4x2恒成立,则a+b的取值范围是( )
A.[-4,8] B.[-2,8]
C.[0,6] D.[4,12]
解析 因为x∈[1,4],所以不等式0≤ax3+bx2+4a≤4x2等价于0≤ax+b+≤4,即0≤a+b≤4.令t=x+,x∈[1,4],则t′=1-==,则t=x+在[1,2)上单调递减,在(2,4]上单调递增,所以当x=2时,tmin=3,当x=1时,tmax=5,所以3≤t≤5,则由0≤at+b≤4,得所以a+b=2(3a+b)-(5a+b)∈[-4,8],故选A.
答案 A
14.已知不等式ex-4x+2≥ax+b(a,b∈R,a≠-4)对任意实数x恒成立,则的最大值为( )
A.-ln 2 B.-1-ln 2
C.-2ln 2 D.2-2ln 2
解析 由不等式ex-4x+2≥ax+b对任意实数x恒成立,得不等式ex-(4+a)x+2-b≥0对任意实数x恒成立,若a+4<0,则当x→-∞时,ex→0,-(4+a)x→-∞,则ex-(a+4)x+2-b→-∞,与ex-(a+4)x+2-b≥0恒成立矛盾,所以a+4>0,此时设f(x)=ex-(a+4)x+2-b,则f′(x)=ex-(a+4),令f′(x)=ex-(a+4)=0,得x=ln(a+4),易得当x∈(-∞,ln(a+4))时,函数f(x)单调递减,当x∈(ln(a+4),+∞)时,函数f(x)单调递增,则由不等式ex-(a+4)x+2-b≥0对任意实数x恒成立得f(x)min=eln(a+4)-(a+4)ln(a+4)+2-b≥0,即(a+4)-(a+4)ln(a+4)≥b-2,则≤1-ln(4+a)-,设y=1-ln x-,则y′=-+=,易得当x=2时,y=1-ln x-取得最大值-ln 2,所以≤1-ln(a+4)-≤-ln 2,当且仅当a=-2,b=-2ln2+4时,等号成立,所以
的最大值为-ln 2,故选A.
答案 A
15.已知实数x,y满足4x+9y=1,则2x+1+3y+1的取值范围是________.
解析 由4x+9y=1得22x+32y=1,3y=,其中22x∈(0,1),所以2x∈(0,1),所以2x+1+3y+1=2×2x+3×3y=2×2x+3,令t=2x,则f(t)=2t+3(00,则当x∈(-∞,0)∪时,f′(x)>0;
当x∈时,f′(x)<0.
故f(x)在(-∞,0),单调递增,在单调递减.
若a=0,则f(x)在(-∞,+∞)单调递增.
若a<0,则当x∈∪(0,+∞)时,f′(x)>0;
当x∈时,f′(x)<0.
故f(x)在,(0,+∞)单调递增,在单调递减.
(2)满足题设条件的a,b存在.
①当a≤0时,由(1)知,f(x)在[0,1]单调递增,所以f(x)在区间[0,1]的最小值为f(0)=b,最大值为f(1)=2-a+b.此时a,b满足题设条件当且仅当b=-1,2-a+b=1,即a=0,b=-1.
②当a≥3时,由(1)知,f(x)在[0,1]单调递减,所以f(x)在区间[0,1]的最大值为f(0)=b,最小值为f(1)=2-a+b.此时a,b满足题设条件当且仅当2-a+b=-1,b=1,即a=4,b=1.
③当0
相关文档
- 河北省衡水中学2020届高三下学期第2021-06-3024页
- 2021届高考数学一轮复习第二章函数2021-06-3033页
- 【数学】2019届一轮复习北师大版排2021-06-3012页
- 山东省潍坊市2019-2020学年高一下2021-06-3026页
- 贵州省思南中学2019-2020学年高二52021-06-307页
- 【数学】山东省威海市2020届高三年2021-06-3014页
- 【数学】2021届一轮复习北师大版(文2021-06-307页
- 浙江省2021届高考数学一轮复习第一2021-06-3010页
- 【数学】2021届一轮复习人教A版(文)2021-06-305页
- 【数学】2018届一轮复习人教A版专2021-06-3010页