• 1.71 MB
  • 2021-10-25 发布

七年级下数学课件《8-5平行线的性质定理》课件_鲁教版

  • 20页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
鲁教版初中数学七年级下册 第5课 第八单元 平行线的性质定理 导入新课 w公理: w同位角相等,两直线平行. w ∵ ∠1=∠2, ∴ a∥b. a b c 2 1 平行线的判定 温故互查 导入新课 w判定定理1: w内错角相等,两直线平行. w∵ ∠1=∠2, ∴ a∥b. w判定定理2: w同旁内角互补,两直线平行. w∵∠1+∠2=1800 , ∴ a∥b. a b c 1 2 a b c 1 2 平行线的判定 温故互查 导入新课 定理:两条平行直线被第三条直线所截,同位角相等。 我们已经探索过平行线的性质,下面证明它们。 新课学习 已知:如图直线AB∥CD,∠1和∠2是直线AB, CD被直线EF截出的同位角。 求证:∠1=∠2. A 2 1 B C D E F M N 如果∠1≠∠2, AB与CD的位置关 系会怎样? 新课学习 证明:如果∠1≠∠2,那么我们可以过点M做直线GH ,使∠EMH=∠2,如图所示。 根据同位角相等,两直线平行,可得到GH∥CD 又因为AB∥CD,这样经过点M存在两条直线 AB和GH都与直线CD平行。 这与“过直线外一点有且只有一条直线与这条 直线平行”这个基本事实矛盾。 这说明假设∠1≠∠2是不成立的,所以∠1=∠2 A 2 1 B C D E F M N G H 新课学习 这一定理可以简述为: 两直线平行,内错角相等。 两直线平行,同位角相等。 利用上面的定理,我们可以证明如下结论: 定理:两条平行直线被第三条直线所截,内错角相等。 这一定理可以简述为: 新课学习 想一想 1、根据上述定理的文字叙述,你能作出相关图形吗? 2、你能根据所作的图形写出已知、求证吗? 3、你能说说证明的思路吗? 新课学习 1 a b c 2 3 已知,如图, 直线a//b,  ∠1和∠2是直线a、b被直 线c截出的内错角. 求证:∠1=∠2 新课学习 已知:如图,直线a∥b, ∠1和∠2 是直线a、b被直线 c截出的内错角 . 求证:∠1=∠2 1 2 3 a b c 证明:∵a∥b ( ) ∴∠3=∠2 ( ) ∵ ∠3=∠1 ( ) ∴∠1=∠2 ( ) 已知 两直线平行,同位角相等 对顶角相等 等量代换 新课学习 两直线平行,同旁内角互补。 类似地,还可以证明: 定理:两条平行直线被第三条直线所截,同旁内角互补。 这一定理可以简述为: 新课学习   已知:如图,直线a//b,∠1 和∠2是直线a,b被直线c截出 的同旁内角.   求证:∠1+∠2=180° a b c 1 2 3 课堂练习  已知:如图,直线a//b,∠1 和∠2是直线a,b被直线c截出 的同旁内角. 求证:∠1+∠2=180° a b c 1 2 3 证法1:∵  a//b(已知)      ∠3=∠2(两直线平行,同位角相等)    ∵ ∠1+∠3=180°(1平角=180°)      ∠1+∠2=180°(等量代换)  课堂练习   已知:如图,直线a//b,∠1 和∠2是直线a,b被直线c截出 的同旁内角. 求证:∠1+∠2=180° a b c 1 2 3 证法2:∵  a//b (已知)      ∠3=∠2 (两直线平行,内错角相等)     ∵ ∠1+∠3=180°(1平角=180°)      ∠1+∠2=180°(等量代换)  课堂练习 1.下列图形中,由AB∥CD,能得到∠1=∠2的是( )B 课堂练习 1.如图,已知直线AB∥CD, 直线EF与直线AB、CD分别交于点E、F, 且有∠1=70°, 则∠2=____. 【解析】由AB∥CD可得出∠2=∠AEF, 因∠1+∠AEF=180°,∠1=70°,可得出∠AEF=110°, 所以∠2=110°. 答案:110° 结论总结 通过本课的学习,你有什么收获? 还有哪些疑问? 作业布置 练习册P51页1、2