• 106.90 KB
  • 2021-10-26 发布

人教版七年级上数学复习检测:期末测试试题(二)

  • 6页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
期末测试题(二)‎ 一、选择题(本大题共10小题,每小题3分,共30分)‎ ‎1.【89390421】有四个负数-2,-4,-1,-6,其中比-5小的数是(  )‎ A. -2 B. -4 C. -1 D. -6‎ ‎2.【89390523】有下列说法:①1是单项式;②单项式-的系数是-1,次数是2;③多项式 x2+x-1的常数项是1;④多项式x2+2xy+y2的次数是2.‎ 其中正确的有(  )‎ A. 1个 B. 2个 C. 3个 D. 4个 ‎3.【89390420】我国是世界上严重缺水的国家之一,目前我国每年可利用的淡水资源总量为 ‎27500亿米3,人均占有淡水量居全世界第110位,因此我们要节约用水.数据27 500亿用科学记数法表示为(  )‎ A.275×104 B.2.75×104 C.2.75×1012 D.27.5×1011‎ ‎4.【89390452】下列图形中,可以是正方体展开图的是(  )‎ ‎ ‎ ‎ A B C D ‎5.【89390437】下列各题中正确的是(  )‎ A. 由7x=4x-3移项,得7x-4x=3‎ B. 由=1+去分母,得2(2x-1)=1+3(x-3)‎ C. 由2(2x-1)-3(x-3)=1去括号,得4x-2-3x-9=1‎ D. 由2(x+1)=x+7去括号、移项、合并同类项,得x=5‎ ‎6.【89390767】将一副三角尺按图1所示方式放置,若∠COD=20°,则∠AOB的度数为(  )‎ A. 140° B. 150° C. 160° D. 170°‎ ‎ ‎ 图1‎ ‎7. 【89390418】下面是小林做的4道作业题:①2ab+3ab=5ab;②2a2+3a2=5a4;③6a2-2a2=4;④4a2b+3a2b=7a2b.做对一题得2分,则他共得到(  )‎ A.2分 B.4分 C.6分 D.8分 ‎8.【89390416】下列说法中正确的是(  )‎ A. 一个角的补角一定大于这个角 B. 任何一个角都有余角 C. 若∠1+∠2+∠3=90°,则∠1,2,∠3互余 D. 若一个角有余角,则这个角的补角与这个角的余角的差为90° ‎ ‎9.【89390428】已知数a,b在数轴上对应的点在原点两侧,并且到原点的距离相等,x,y 互为倒数,则2017|a+b|-2xy的值为(  )‎ A. 2 B. -2 C. 1 D. -1‎ ‎10.【89390412】如图2,O是线段AC中点,B是AC上任意一点,M,N分别是AB,BC的 中点,下列四个等式中,不成立的是( ) ‎ A. MN=OC B. MB=(AC-BC) ‎ C. ON=(AC-BC) D. MN=(AC-BC)‎ ‎ 图2‎ 二、填空题(本大题共6小题,每小题4分,共24分)‎ ‎11.【89390435】计算:33°52′+21°54′=______;36°27′×3=_______.‎ ‎12.【89390456】如图3,一只蚂蚁从长方体的一个顶点A沿表面爬行到顶点C处,有多条爬 行线路,其中沿AC爬行一定是最短路线,其依据的数学道理是_________.‎ ‎ ‎ 图3 图4‎ ‎13.【89390432】如图4,4个有理数在数轴上的对应点分别为M,P,N,Q,若点M,N表示 的有理数互为相反数,则图中表示绝对值最小的数的点是___________.‎ ‎14.【89390417】将一块长方形铁皮的四个角各剪去一个边长为2 cm的小正方形,做成一个无盖的盒子,已知长方形铁皮的宽为10 cm,盒子的容积为300 cm3,则铁皮的长为 cm.‎ ‎15.【89390434】观察下列各式:22-1=1×3;32-1=2×4;42-1=3×5;52-1=4×6;……请你猜想规律,用含自然数n(n≥2)的等式表示出来:__________.‎ ‎16.【89390413】已知OM是∠AOB的平分线,ON是∠BOC的平分线,若∠AOB=50°,∠COB=‎ ‎80°,则∠MON 的度数是___________.‎ 三、解答题(本大题共7小题,共66分)‎ ‎17. 【89390415】(每小题4分,共8分)计算:‎ ‎(1)×(-48);‎ ‎(2)−32−|(−5)3|×(−)2−18÷|−(−3)2|.‎ ‎18.【89390461】(6分)已知A=2m2n+3mn2,B=mn2-m2n,先化简A-3B,再求其值,其中m=4,‎ n=-.‎ ‎19.【89390439】(每小题5分,共10分)解方程: (1)x-7=10-4(x+0.5);‎ ‎ (2).‎ ‎20.【89390411】(8分)如图5,A,O,B三点在同一直线上,OC是任意一条射线,OD,‎ OE分别是∠AOC和∠BOC的平分线.‎ ‎(1)请你直接写出图中∠COE的余角和∠AOE的补角;‎ ‎(2)当∠BOE=25°时,求∠COD的度数.‎ ‎ ‎ ‎ 图5‎ ‎21.【89390423】(10分)甲、乙两人从学校到2000米远的展览馆去参观,甲走了4分后乙才出发,已知甲的速度是80米/分,乙的速度是100米/分. (1)乙出发后经过多长时间能追上甲? (2)乙追上甲时离展览馆还有多远?‎ ‎22.【89390436】(12分)如图6,点C在线段AB上,点M,N分别是AC,BC的中点.‎ ‎(1)若AC=8 cm,BC=6 cm,求线段MN的长; ‎ ‎(2)若C为线段AB上任一点,满足AC+BC=a,其他条件不变,你能猜想MN的长度吗?写出你的 结论并说明理由;‎ ‎(3)若点C在线段AB的延长线上,且满足AC-BC=b,M,N分别为AC,BC的中点,你能猜想 MN的长度吗?请画出图形并写出你的结论.‎ ‎ ‎ ‎ 图6‎ ‎23.【89390438】(12分)如图7,用同样规格的黑、白两色的正方形瓷砖铺设长方形地面,‎ 请观察图形并解答有关问题.‎ ‎(1)在第n个图中,第一横行共有(_____)块瓷砖,第一竖列共有(_____)块瓷砖;(均用含n 的式子表示)‎ ‎(2)在第n个图中,用n表示铺设地面所用白色瓷砖和黑色瓷砖的数量.‎ ‎(3)某商店黑色瓷砖原价每块4元,则铺设第n个图的长方形地面,共需花多少元购买黑瓷砖?现 在该商店举行促销活动,活动一:凡参加买黑色瓷砖活动者赠送2块黑色瓷砖;活动二:不赠送瓷砖,每块黑色瓷砖打9折.现在小华需要购买黑瓷砖,铺设n=6时长方形地面,小华参加哪个活动合算?‎ ‎ ‎ ‎ 图7‎ ‎(拟题 刘来福)‎ 期末测试题(二)‎ 一、1.D 2.B 3.C 4.D 5.D 6.C 7.B 8.D 9.B ‎ ‎10.D 提示:根据O是线段AC中点,M,N分别是AB,BC的中点,可知MN=MB+BN=(AB ‎+BC)=OC,MB=MN-BN=(AC-BC),ON=OC-CN=(AC-BC), MN=MB+BN=(AB+BC).‎ 二、11. 55°46′ 109°21′ 12. 两点之间,线段最短 13.点P ‎ ‎14.29 15.n2-1=(n-1)(n+1) ‎ ‎16.15°或65° 提示:当∠AOB在∠BOC内部时,如图1,∠MON=(∠BOC-∠AOB)=(80°-‎ ‎50°)=15°;当∠AOB在∠BOC外部时,如图2,∠MON=(∠BOC+∠AOB)=(80°+50°)=65°.‎ ‎ ‎ 图1 图2‎ ‎17. 解:(1)原式=×(-48)-×(-48)+×(-48)-×(-48)=-44+56-36+36=2;‎ ‎(2)原式=-9-125×-18÷9=-9-20-2=-31.‎ ‎18. 解:A-3B=(2m2n+3mn2)-3(mn2-m2n)=2m2n+3mn2-3mn2+3m2n=5m2n.‎ 当m=4,n=-时,5m2n =5×42×(-)=-40. ‎ ‎19.(1)x=3;(2)x=-.‎ ‎20. 解:(1)∠COE的余角有∠AOD和∠DOC,∠AOE的补角有∠COE和∠BOE;‎ ‎(2)因为OE是∠BOC的平分线,且∠BOE=25°,所以∠BOC=2∠BOE=2×25°=50°.‎ 所以∠AOC=180°-∠BOC=180°-50°=130°.‎ 又因为OD是∠AOC的平分线,所以∠COD=∠AOC=×130°=65°.‎ ‎21. 解:(1)设乙要x分能追上甲. 根据题意,得100x=80x+4×80,解得x=16. 答:乙出发后经过16分能追上甲. (2)乙追上甲时离展览馆的距离为:2000-100×16=400(米). 答:乙追上甲时离展览馆还有400米.‎ ‎22. 解:(1)因为点M,N分别是AC,BC的中点,所以CM=AC=×8=4(cm),CN=BC=×6=‎ ‎3(cm).‎ 所以MN=CM+CN=4+3=7(cm),即线段MN的长为7 cm.‎ ‎(2)MN的长度等于a.‎ 由已知,得MN=MC+CN=AC+BC=(AC+BC)=a.‎ ‎(3)MN的长度等于b,如图3所示.‎ ‎ 图3‎ 根据图形,可得MN=MC-NC=AC-BC=(AC-BC)=b.‎ ‎23. 解:(1)n+3 n+2 ‎ ‎(2)通过观察图形可知,当n=1时,用白色瓷砖12+1(块),黑色瓷砖4×1+6(块);‎ 当n=2时,用白色瓷砖22+2(块),黑色瓷砖4×2+6(块);‎ 当n=3时,用白色瓷砖32+3(块),黑色瓷砖4×3+6(块);‎ 可以发现,白色瓷砖块数等于图形序号的平方加上图形序号,需要黑色瓷砖块数等于图形序号的4倍加上6.所以在第n个图形中,白瓷砖的块数(单位:块)为:n2+n;黑瓷砖的块数(单位:块)为:4n+6. ‎ ‎(3)第n个图的长方形地面,购买黑色瓷砖的费用(单位:元)为:4(4n+6)=16n+24.‎ 活动一:当n=6时,16n+24-2×4=16×6+24-8=112(元);‎ 活动二:当n=6时,(16n+24)×0.9=(16×6+24)×0.9=108(元).‎ 因为112>108,所以小华参加活动二合算.‎