- 736.50 KB
- 2022-03-31 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
小结与复习第二十一章一次函数要点梳理考点讲练课堂小结课后作业
一次函数一般地,如果y=kx+b(k、b是常数,k≠0),那么y叫做x的一次函数.正比例函数特别地,当b=____时,一次函数y=kx+b变为y=_____(k为常数,k≠0),这时y叫做x的正比例函数.0kx1.一次函数与正比例函数的概念2.分段函数当自变量的取值范围不同时,函数的表达式也不同,这样的函数称为分段函数.要点梳理
函数字母系数取值(k>0)图象经过的象限函数性质y=kx+b(k≠0)b>0y随x增大而增大b=0b<0第一、三象限第一、二、三象限第一、三、四象限3.一次函数的图象与性质
函数字母系数取值(k<0)图象经过的象限函数性质y=kx+b(k≠0)b>0y随x增大而减小b=0b<0第一、二、四象限第二、四象限第二、三、四象限
求一次函数表达式的一般步骤:(1)先设出函数表达式;(2)根据条件列关于待定系数的方程(组);(3)解方程(组)求出表达式中未知的系数;(4)把求出的系数代入设的表达式,从而具体写出这个解析式.这种求表达式的方法叫待定系数法.4.用待定系数法求一次函数的表达式
求ax+b=0(a,b是常数,a≠0)的解.x为何值时,函数y=ax+b的值为0?从“数”的角度看求ax+b=0(a,b是常数,a≠0)的解.求直线y=ax+b,与x轴交点的横坐标.从“形”的角度看(1)一次函数与一元一次方程5.一次函数与方程
一般地,任何一个二元一次方程都可以转化为一次函数y=kx+b(k、b为常数,且k≠0)的形式,所以每个二元一次方程都对应一个一次函数,也对应一条直线.(2)一次函数与二元一次方程组方程组的解对应两条直线交点的坐标.
考点一一次函数的图象与性质例1已知函数y=(2m+1)x+m﹣3;(1)若该函数是正比例函数,求m的值;(2)若函数的图象平行直线y=3x﹣3,求m的值;(3)若这个函数是一次函数,且y随着x的增大而减小,求m的取值范围;(4)若这个函数图象过点(1,4),求这个函数的表达式.【分析】(1)由函数是正比例函数得m-3=0且2m+1≠0;(2)由两直线平行得2m+1=3;(3)一次函数中y随着x的增大而减小,即2m+1<0;(4)代入该点坐标即可求解.考点讲练
解:(1)∵函数是正比例函数,∴m﹣3=0,且2m+1≠0,解得m=3.(2)∵函数的图象平行于直线y=3x﹣3,∴2m+1=3,解得m=1.(3)∵y随着x的增大而减小,∴2m+1<0,解得m<.(4)∵该函数图象过点(1,4),代入得2m+1+m-3=4,解得m=2,∴该函数的表达式为y=5x-1.
一次函数的图象与y轴交点的纵坐标就是y=kx+b中b的值;两条直线平行,其函数表达式中的自变量系数k相等;当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小.方法总结针对训练1.一次函数y=-5x+2的图象不经过第______象限.2.点(-1,y1),(2,y2)是直线y=2x+1上两点,则y1____y2.三<
3.填空题:有下列函数:①,②,③,④.其中函数图象过原点的是_____;函数y随x的增大而增大的是________;函数y随x的增大而减小的是_____;图象在第一、二、三象限的是______.②③①②③④xy2=
考点二一次函数与方程例2如图,一次函数y1=x+b与一次函数y2=kx+4的图象交于点P(1,3),则关于x的不等式x+b>kx+4的解集是()yxOy1=x+by2=kx+4PA.x>﹣2B.x>0C.x>1D.x<113C【分析】观察图象,两图象交点为P(1,3),当x>1时,y1在y2上方,据此解题即可.【答案】C.
本题考查了一次函数与一元一次不等式,从函数的角度看,就是寻求一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.方法总结
针对训练4.方程x+2=0的解就是函数y=x+2的图象与()A.x轴交点的横坐标B.y轴交点的横坐标C.y轴交点的纵坐标D.以上都不对5.两个一次函数y=-x+5和y=-2x+8的图象的交点坐标是_________.A(3,2)
(1)问符合题意的搭配方案有几种?请你帮助设计出来;(2)若搭配一个A种造型的成本是800元,搭配一个B种造型的成本是960元,试说明(1)中哪种方案成本最低?最低成本是多少元?例3为美化深圳市景,园林部门决定利用现有的3490盆甲种花卉和2950盆乙种花卉搭配A、B两种园艺造型共50个摆放在迎宾大道两侧,已知搭配一个A种造型需甲种花卉80盆,乙种花卉40盆,搭配一个B种造型需甲种花卉50盆,乙种花卉90盆.考点三一次函数的应用
解:设搭配A种造型x个,则B种造型为(50-x)个,依题意,得∴31≤x≤33.∵x是整数,x可取31,32,33,∴可设计三种搭配方案:①A种园艺造型31个,B种园艺造型19个;②A种园艺造型32个,B种园艺造型18个;③A种园艺造型33个,B种园艺造型17个.解得
方案①需成本:31×800+19×960=43040(元);方案②需成本:32×800+18×960=42880(元);方案③需成本:33×800+17×960=42720(元).(2)方法一:方法二:成本为y=800x+960(50-x)=-160x+48000(31≤x≤33).根据一次函数的性质,y随x的增大而减小,故当x=33时,y取得最小值为33×800+17×960=42720(元).即最低成本是42720元.
用一次函数解决实际问题,先理解清楚题意,把文字语言转化为数学语言,列出相应的不等式(方程),若是方案选择问题,则要求出自变量在取不同值时所对应的函数值,判断其大小关系,结合实际需求,选择最佳方案.方法总结
6.李老师开车从甲地到相距240千米的乙地,如果油箱剩余油量y(升)与行驶里程x(千米)之间是一次函数关系,其图象如图所示,那么到达乙地时油箱剩余油量是多少升?针对训练
解:设一次函数的表达式为y=kx+35,将(160,25)代入,得160k+35=25,解得k=,所以一次函数的表达式为y=x+35.再将x=240代入y=x+35,得y=×240+35=20,即到达乙地时油箱剩余油量是20升.
7.小星以2米/秒的速度起跑后,先匀速跑5秒,然后突然把速度提高4米/秒,又匀速跑5秒.试写出这段时间里他的跑步路程s(单位:米)随跑步时间x(单位:秒)变化的函数关系式,并画出函数图象.解:依题意得s={2x(0≤x≤5)10+6(x-5)(5
相关文档
- 八年级下数学课件《一次函数与二元2022-03-3118页
- 八年级下数学课件《用公式法解一元2022-03-3122页
- 八年级下数学课件《二次根式的加减2022-03-3127页
- 八年级下数学课件《9-1成比例线段2022-03-3120页
- 八年级下数学课件:17-1 勾股定理 (2022-03-3123页
- 八年级下数学课件八年级下册数学课2022-03-3124页
- 八年级下数学课件:17-1 勾股定理 (2022-03-3157页
- 八年级下数学课件《一次函数》课件2022-03-3130页
- 八年级下数学课件《相似三角形的性2022-03-3120页
- 八年级下数学课件《坐标与图形的位2022-03-3119页