- 40.00 KB
- 2021-10-26 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
三角形全等的判定(二)
教学目标
1.三角形全等的“边角边”的条件.
2.经历探索三角形全等条件的过程,体会利用操作、归纳获得数学结论的过程.
3.掌握三角形全等的“SAS”条件,了解三角形的稳定性.
4.能运用“SAS”证明简单的三角形全等问题.
教学重点
三角形全等的条件.
教学难点
寻求三角形全等的条件.
教学过程
一、创设情境,复习提问
1.怎样的两个三角形是全等三角形?
2.全等三角形的性质?
3.指出图中各对全等三角形的对应边和对应角,并说明通过怎样的变换能使它们完全重合:
图(1)中:△ABD≌△ACE,AB与AC是对应边;
图(2)中:△ABC≌△AED,AD与AC是对应边.
4.三角形全等的判定Ⅰ的内容是什么?
二、导入新课
1.三角形全等的判定(二)
(1)全等三角形具有“对应边相等、对应角相等”的性质.那么,怎样才能判定两个三角形全等呢?也就是说,具备什么条件的两个三角形能全等?是否需要已知“三条边相等和三个角对应相等”?现在我们用图形变换的方法研究下面的问题:
如图2,AC、BD相交于O,AO、BO、CO、DO的长度如图所标,△ABO和△CDO是否能完全重合呢?
3
不难看出,这两个三角形有三对元素是相等的:
AO=CO,∠AOB= ∠COD,BO=DO.
如果把△OAB绕着O点顺时针方向旋转,因为OA=OC,所以可以使OA与OC重合;又因为∠AOB =∠COD, OB=OD,所以点B与点D重合.这样△ABO与△CDO就完全重合.
(此外,还可以图1(1)中的△ACE绕着点A逆时针方向旋转∠CAB的度数,也将与△ABD重合.图1( 2)中的△ABC绕着点A旋转,使AB与AE重合,再把△ADE沿着AE(AB)翻折180°.两个三角形也可重合)
由此,我们得到启发:判定两个三角形全等,不需要三条边对应相等和三个角对应相等.而且,从上面的例子可以引起我们猜想:如果两个三角形有两边和它们的夹角对应相等,那么这两个三角形全等.
2.上述猜想是否正确呢?不妨按上述条件画图并作如下的实验:
(1)读句画图:
①画∠DAE=45°,
②在AD、AE上分别取 B、C,使 AB=3.1cm, AC=2.8cm.
③连结BC,得△ABC.④按上述画法再画一个△A'B'C'.
(2)把△A'B'C'剪下来放到△ABC上,观察△A'B'C'与△ABC是否能够完全重合?
3.边角边公理.
有两边和它们的夹角对应相等的两个三角形全等(简称“边角边”或“SAS”)
三、例题与练习
1.填空:
(1)如图3,已知AD∥BC,AD=CB,要用边角边公理证明△ABC≌△CDA,需要三个条件,这三个条件中,已具有两个条件,一是AD=CB(已知),二是___________;还需要一个条件_____________(这个条件可以证得吗?).
3
(2)如图4,已知AB=AC,AD=AE,∠1=∠2,要用边角边公理证明△ABD≌ACE,需要满足的三个条件中,已具有两个条件:_________________________(这个条件可以证得吗?).
2、例1 已知: AD∥BC,AD= CB(图3).
求证:△ADC≌△CBA.
问题:如果把图3中的△ADC沿着CA方向平移到△ADF的位置(如图5),那么要证明△ADF≌ △CEB,除了AD∥BC、AD=CB的条件外,还需要一个什么条件(AF= CE或AE =CF)?怎样证明呢?
例2 已知:AB=AC、AD=AE、∠1=∠2(图4).求证:△ABD≌△ACE.
四、小 结:
1.根据边角边公理判定两个三角形全等,要找出两边及夹角对应相等的三个条件.
2.找使结论成立所需条件,要充分利用已知条件(包括给出图形中的隐含条件,如公共边、公共角等),并要善于运用学过的定义、公理、定理.
五、作 业:
1.已知:如图,AB=AC,F、E分别是AB、AC的中点.求证:△ABE≌△ACF.
2.已知:点A、F、E、C在同一条直线上, AF=CE,BE∥DF,BE=DF.
求证:△ABE≌△CDF.
3
相关文档
- 八年级上数学课件13-3-4图形变换中2021-10-2624页
- 2020八年级数学上册 第12章 全等三2021-10-264页
- 八年级上数学课件八年级上册数学课2021-10-2618页
- 浙教版数学八年级上册《全等三角形2021-10-262页
- 八年级数学上册第十二章全等三角形2021-10-2629页
- 数学人教版八年级上册教案12-1全等2021-10-264页
- 2018年秋八年级数学上册第十三章全2021-10-2621页
- 八年级数学下册知能提升作业二十一2021-10-265页
- 2020八年级数学上册 第12章 全等三2021-10-265页
- 2020-2021学年人教版初二数学上册2021-10-2624页