- 2.97 MB
- 2021-10-26 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
20.1.2 中位数和众数
第二十章 数据的分析
第2课时 平均数、中位数和众数的应用
情境引入
学习目标
1.进一步认识平均数、中位数、众数都可以反映
一组数据的集中趋势;
2.了解平均数、中位数、众数各自的特点,能选
择适当的量反映数据的集中趋势.(重点、难点)
导入新课
问题引入
1.数学期中考试,小明同学得了78分.全班共30人,
其他同学的成绩为1个100分, 4个90分, 22个80分,
以及一个2分和一个10分.小明回家告诉妈妈说,他
这次成绩处于班级“中上水平”.
小明说谎了吗 74.4x
2.有6 户家庭的年收入分别为(单位:万元):4,
5,5,6,7,50.你认为这6户家庭的年收入水平
大概是多少?
(3)用众数估计: 众数= 5(万元).
(1)用平均数估计: (万元);
4 5 5 6 7 50 12 83
6
+ + + + +
= .x
(2)用中位数估计:中位数= (万元);
5 6 5 5
2
+
= .
如果把数据50改成9,结果又会怎样?
问题1:八年级某班的教室里,三位同学正在为谁
的数学成绩好而争论,他们的五次数学成绩分别是:
小华 62 94 95 98 98
小明 62 62 98 99 100
小丽 40 62 85 99 99
他们都认为自己的数学成绩比其他两位同学好,
他们的依据是什么?
讲授新课
平均数、中位数和众数的应用
合作探究
分析:小华成绩的众数是_____,中位数是_____,
平均数是_____;小明成绩的众数是_____,中位
数是_____,平均数是_____;小丽成绩的众数是
_____,中位数是_____,平均数是_____.
98
62
95
98
89.4
84.2
99 85 77
因为他们之中,小华的平均数最大,小明的中位
数最大,小丽的众数最大,所以都认为自己的成
绩比其他两位同学好.
你认为谁的数
学成绩最好呢?
例1 某商场服装部为了调动营业员的积极性,
决定实行目标管理,根据目标完成的情况对营业
员进行适当的奖励.为了确定一个适当的月销售
目标,商场服装部统计了每个营业员在某月的销
售额(单位:万元),数据如下:
17 18 16 13 24 15 28 26 18 19
22 17 16 19 32 30 16 14 15 26
15 32 23 17 15 15 28 28 16 19
典例精析
问题如下:
(1)月销售额在哪个值的人数最多?中间的月销售
额是多少?平均的月销售额是多少?
(2)如果想确定一个较高的销售目标,你认为月销
售额定为多少合适?说明理由.
(3)如果想让一半左右的营业员都能达到销售目标,
你认为月销售额定为多少合适?说明理由.
分析:本题通过分析样本数据的平均数、中位
数、众数来估计______的情况.
确定一个适当的月销售目标是一个关键问题,
如果目标定得太高,多数营业员完不完成任务,会
使营业员失去信心;如果目标定得太低,不能发挥
营业员的潜力.
总体
0
4
2
6
人数
销售额/万元
解:整理上面的数据得以下图表(请补充完整)
销售额/万
元
13 14 15 16 17 18 19 22 23 24 26 28 30 32
人数
13 141516 17 18 19 22 23 24 26 28 30 32
1 1 5 4 3 2 3 1 1 1 12 23
解:(1)样本数据的众数是_____,中位数是_____,
利用计算器求得这组数据的平均数约是_____.
可以推测,这个服装部营业员的月销售额为_____万元
的人数最多,中间的月销售额是____万元,平均月销售
额大约是____万元.
15
15
18
18
20.3
20.3
(1)月销售额在哪个值的人数最多?中间的月销
售额是多少?平均的月销售额是多少?
销售额/万
元
13 14 15 16 17 18 19 22 23 24 26 28 30 32
人数 1 1 5 4 3 2 3 1 1 1 12 23
解:(2)这个目标可以定为每月____万元(平均
数).因为从样本数据看,在平均数、中位数和众数中,
平均数最____.可以估计,月销售额定为每月____万元
是一个较高的目标,大约会有___________的营业员
获得奖励.
20.3
20.3大
三分之一
(2)如果想确定一个较高的销售目标,你认为月销
售额定为多少合适?说明理由.
销售额/万
元
13 14 15 16 17 18 19 22 23 24 26 28 30 32
人数 1 1 5 4 3 2 3 1 1 1 12 23
解:(3)月销售额可以定为每月____万元(中位
数).因为从样本情况看,月销售额在____万元以上
(含18万元)的有16人,占总人数的一半左右.可以
估计,如果月销售额定为____万元,将有一半左右
的营业员获得奖励.
18
18
18
销售额/万
元
13 14 15 16 17 18 19 22 23 24 26 28 30 32
人数 1 1 5 4 3 2 3 1 1 1 12 23
(3)如果想让一半左右的营业员都能达到销售目标,
你认为月销售额定为多少合适?说明理由.
平均数的计算要用到所有的数据,它能够充分
利用数据提供的信息.但它受极端值的影响较大,
任何一个数据的变动都会相应引起平均数的变动,
请说说平均数、众数和中位数这三个统计量
的各自特点.
归纳总结
众数是当一组数据中某一数据重复出现较多时,
人们往往关心的一个量,众数不受极端值的影响,这
是它的一个优势,缺点是当众数有多个且众数的频数
相对较小时可靠性小,局限性大.
中位数的计算很少,仅与数据的排列位置有关,
不易受极端值影响,中位数可能出现在所给数据中,
也可能不在所给的数据中.当一组数据中的个别数据
变动较大时,可用中位数描述其趋势.
例2 某校组织了一次环保知识竞赛,每班选25名
同学参加比赛,成绩分为A,B,C,D四个等级,
其中相应等级的得分依次记为100分、90分、80分、
70分,学校将某年级的一班和二班的成绩整理并绘
制成如下的统计图:
请根据以上提供的信息解答下列问题:
(1)把一班竞赛成绩统计图补充完整;
2
解:(1)25-6-12-5=2(人),如图所示.
平均数(分) 中位数(分) 众数(分)
一班 a b 90
二班 87.6 80 c
(2)直接写出表格中a,b,c的值;
解:(2)a=87.6,b=90,c=80
解:(3)①一班和二班平均数相同,一班的中位数
大于二班的中位数,故一班的成绩好于二班;②一
班和二班平均数相同,一班的众数小于二班的众数,
故二班的成绩好于一班;③B级以上(包括B级)一班
18人,二班12人,故一班的成绩好于二班.
(3)请从以下给出的三个方面中任选一个对这次竞
赛成绩的结果进行分析:①从平均数和中位数方面
来比较一班和二班的成绩;②从平均数和众数方面
来比较一班和二班的成绩;③从B级以上(包括B级)
的人数方面来比较一班和二班的成绩.
做一做
甲、乙两名运动员在6次百米跑训练中的成绩如下:
甲(秒)10.8 10.9 11.0 10.7 11.2 10.8
乙(秒)10.9 10.9 10.8 10.8 10.5 10.9
请你比较这两组数据的众数,平均数和中位数,再
作判断.
分析:谈看法实质上就是按众数,平均数和中位数
的大小比较其优劣.
解:甲:平均数:10.9,众数:10.8,中位数:10.85;
乙:平均数:10.8,众数:10.9,中位数:10.85.
从平均数看,甲的成绩比乙的好;从众数看,乙
的成绩比甲的好;从中位数看两人成绩一样.
例3 甲、乙两名队员参加射击训练,成绩分别绘制
成下列两个统计图:
根据以上信息,整理分析数据如下:
平均成绩(环) 中位数(环) 众数(环)
甲 a 7 7
乙 7 b 8
(1)写出表格中a,b的值;
解:(1)a=7,b=7.5
(2)分别运用表中的三个统计量,简要分析这两名队
员的射击成绩,若选派其中一名参赛,你认为应选哪
名队员?
解:(2)从平均成绩看甲、乙二人的成绩相等均为7
环,从中位数看甲射中7环以上的次数小于乙,从众
数看甲射中7环的次数最多而乙射中8环的次数最多.
综合以上各因素,若选派一名学生参赛的话,可选择
乙参赛,因为乙获得高分的可能更大.
当堂练习
1.根据实际情况填写(填平均数、中位数、众数)
①老板进货时关注卖出商品的 .
②评委给选手综合得分时关注 .
③被招聘的员工关注公司员工工资的 . 中位数
平均数
众数
2.校有25名同学参加某比赛,预赛成绩各不相同,
取前13名参加决赛,其中一名同学已经知道自己的
成绩,能否进入决赛,只需要再知道这25名同学成
绩的( )
A.最高分 B.中位数 C.方差 D.平均数
B
3.公园里有甲、乙两群游客正在做团体游戏,两群游
客的年龄如下:(单位:岁)
甲群:13、13、14、15、15、15、16、17、17.
乙群:3、4、4、5、5、6、6、54、57.
(1)甲群游客的平均年龄是 岁,中位数是 岁,
众数是 岁,其中能较好反映甲群游客年龄特征的
是 .
(2)乙群游客的平均年龄是 岁,中位数是 岁,
众数是 岁.其中能较好反映乙群游客年龄特
征的是 .
15 15
15
16
4、5、6
5
平均数、中位数或众数
中位数或众数
4.某餐厅共有10名员工,所有员工工资的情况如下表:
请解答下列问题:
(1)餐厅所有员工的平均工资是多少?
(2)所有员工工资的中位数是多少?
解:(1)平均工资为4350元.(2)工资的中位数为2000元.
(3)用平均数还是中位数描述该餐厅员工工资的一般
水平比较恰当?
(4)去掉经理和厨师甲的工资后,其他员工的平均工
资是多少?它是否能反映餐厅员工工资的一般水平?
解:(3)由(1)(2)可知,用中位数描述该餐厅员工工
资的一般水平比较恰当.
(4)去掉经理和厨师甲的工资后,其他员工的平均
工资是2062.5元,和(3)的结果相比较,能反映餐厅
员工工资的一般水平.
课堂小结
平均数、中
位数和众数
的应用
平均数、中位数、众数的实际应用
平均数、中位数、众数的特征
相关文档
- 人教版8年级语文上册 《三峡》教学2021-10-2615页
- 八年级数学下册第六章平行四边形42021-10-2614页
- 人教版8年级语文上册 新第六单元第2021-10-2654页
- 人教版八年级地理上册全册教学课件2021-10-26277页
- 八年级数学下册第六章平行四边形32021-10-2613页
- 2018_2019学年八年级数学上册第二2021-10-2616页
- 人教版八年级上语文教学课件:记承天2021-10-2620页
- 人教版八年级数学上册第十四章整式2021-10-2621页
- 八年级数学上册第三章位置与坐标3-2021-10-2627页
- 八年级数学上册第十五章分式15-2分2021-10-2628页