- 252.50 KB
- 2021-10-27 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
2.1 不等关系 教案(北师大版八年级下)
●教学目标
(一)教学知识点
1.理解不等式的意义.
2.能根据条件列出不等式.
(二)能力训练要求:通过列不等式,训练学生的分析判断能力和逻辑推理能力.
(三)情感与价值观要求:通过用不等式解决实际问题,使学生认识数学与人类生活的密切联系以及对.并以此激发学生学习数学的信心和兴趣.
●教学重点:用不等关系解决实际问题.
●教学难点:正确理解题意列出不等式.人类历史发展的作用
●教学方法:讨论探索法.
●教学过程
Ⅰ.创设问题情境,引入新课
[师]我们学过等式,知道利用等式可以解决许多问题.同时,我们也知道在现实生活中还存在许多不等关系,利用不等关系同样可以解决实际问题.本节课我们就来了解不等关系,以及不等关系的应用.
Ⅱ.新课讲授
[师]既然不等关系在现实生活中并不少见,大家肯定接触过不少,能举出例子吗?
[生]可以.比如我的身高比她的身高高5公分.
用天平称重量时,两个托盘不平衡等.
[师]很好.那么,如何用式子表示不等关系呢?请看例题.
课件展示(§1.1 A)
- 7 -
[师]本题中大家首先要弄明白两个问题,一个是正方形和圆的面积计算公式,另一个是了解“不大于”“大于”等词的含意.
[生]正方形的面积等于边长的平方.
圆的面积是πR2,其中R是圆的半径.
两数比较有大于、等于、小于三种情况,“不大于”就是等于或小于.
[师]下面请大家互相讨论,按照题中的要求进行解答.
[生](1)因为绳长l为正方形的周长,所以正方形的边长为,得面积为()2,要使正方形的面积不大于25 cm2,就是
()2≤25.
即≤25.
(2)因为圆的周长为l,所以圆的半径为
R=.
要使圆的面积不小于100 cm2,就是
- 7 -
π·()2≥100
即≥100
(3)当l=8时,正方形的面积为=4(cm2).
圆的面积为≈5.1(cm2).
∵4<5.1
∴此时圆的面积大.
当l=12时,正方形的面积为=9(cm2).
圆的面积为≈11.5(cm2)
此时还是圆的面积大.
(4)我们可以猜想,用长度均为l cm的两根绳子分别围成一个正方形和圆,无论l取何值,圆的面积总大于正方形的面积,即
>.
因为分子都是l 2相等、分母4π<16,根据分数的大小比较,分子相同的分数,分母大的反而小,因此不论l取何值,都有>.
做一做
课件展示(§1.1 B)
- 7 -
[师]请大家互相讨论后列出关系式.
[生]设这棵树至少生长x年其树围才能超过2.4 m,得
3x+5>240
议一议
观察由上述问题得到的关系式,它们有什么共同特点?
[生]由≤25
>100
>
3x+5>240
得,这些关系式都是用不等号连接的式子.由此可知:
一般地,用符号“<”(或“≤”),“>”(或“≥”)连接的式子叫做不等式(inequality).
例题.
用不等式表示
- 7 -
(1)a是正数;
(2)a是负数;
(3)a与6的和小于5;
(4)x与2的差小于-1;
(5)x的4倍大于7;
(6)y的一半小于3.
[生]解:(1)a>0;(2)a<0;
(3)a+6<5;(4)x-2<-1;
(5)4x>7;(6)y<3.
Ⅲ.随堂练习
2.解:(1)a≥0;
(2)c>a且c>b;
(3)x+17<5x.
补充练习
当x=2时,不等式x+3>4成立吗?
当x=1.5时,成立吗?
当x=-1呢?
解:当x=2时,x+3=2+3=5>4成立,
当x=1.5时,x+3=1.5+3=4.5>4成立;
当x=-1时,x+3=-1+3=2>4,不成立.
Ⅳ.课时小结
能根据题意列出不等式,特别要注意“不大于”,“不小于”等词语的理解.
通过不等关系的式子归纳出不等式的概念.
Ⅴ.课后作业
习题1.1
1.解:(1)3x+8>5x;
(2)x2≥0;
(3)设海洋面积为S海洋,陆地面积为S陆地,则有S海洋>S陆地.
(4)设老师的年龄为x,你的年龄为y,则有x>2y.
(5)m铅球>m篮球.
- 7 -
2.解:满足条件的数组有:
1,3;1,5;1,7;3,5.
3.解:所需甲种原料的质量为x千克,则所需乙种原料的质量为(10-x)千克,得
600x+100(10-x)≥4200.
4.解:8x+4(10-x)≤72.
Ⅵ.活动与探究
a,b两个实数在数轴上的对应点如图1-2所示:
图1-2
用“<”或“>”号填空:
(1)a__________b;(2)|a|__________|b|;
(3)a+b__________0;(4)a-b__________0;
(5)a+b__________a-b;(6)ab__________a.
解:由图可知:a>0,b<0,|a|<|b|.
(1)a>b;(2)|a|<|b|;
(3)a+b<0;(4)a-b>0;
(5)a+b<a-b;(6)ab<a.
●板书设计
2.1 不等关系
一、1.课件2.1 A(讨论长度均为l cm的绳子,分别围成一个正方形和圆,比较它们的面积的大小).
2.做一做(课件2.1 B):根据已知条件列不等式
3.归纳不等式的定义
4.例题
二、课堂练习
三、课时小结
四、课后作业
●备课资料
参考练习
用不等式表示:
- 7 -
(1)x的与5的差小于1;
(2)x与6的和大于9;
(3)8与y的2倍的和是正数;
(4)a的3倍与7的差是负数;
(5)x的4倍大于x的3倍与7的差;
(6)x的与1的和小于-2;
(7)x与8的差的不大于0.
参考答案:
解:(1) x-5<1;
(2)x+6>9;
(3)8+2y>0;
(4)3a-7<0;
(5)4x>3x-7;
(6)x+1<-2;
(7)(x-8)≤0.
- 7 -