• 43.50 KB
  • 2021-11-01 发布

初中数学八年级上册第十二章全等三角形12-2三角形全等的判定第3课时角边角角角边教案2 人教版

  • 4页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
三角形全等的判定(三)‎ 教学目标 ‎1.三角形全等的条件:角边角、角角边.‎ ‎2.三角形全等条件小结.‎ ‎3.掌握三角形全等的“角边角”“角角边”条件.‎ ‎4.能运用全等三角形的条件,解决简单的推理证明问题.‎ 教学重点 已知两角一边的三角形全等探究.‎ 教学难点 灵活运用三角形全等条件证明.‎ 教学过程 Ⅰ.提出问题,创设情境 ‎1.复习:(1)三角形中已知三个元素,包括哪几种情况?‎ 三个角、三个边、两边一角、两角一边.‎ ‎(2)到目前为止,可以作为判别两三角形全等的方法有几种?各是什么?‎ 三种:①定义;②SSS;③SAS.‎ ‎2.在三角形中,已知三个元素的四种情况中,我们研究了三种,今天我们接着探究已知两角一边是否可以判断两三角形全等呢?‎ Ⅱ.导入新课 问题1:三角形中已知两角一边有几种可能?‎ ‎1.两角和它们的夹边.‎ ‎2.两角和其中一角的对边.‎ 问题2:三角形的两个内角分别是60°和80°,它们的夹边为‎4cm,你能画一个三角形同时满足这些条件吗?将你画的三角形剪下,与同伴比较,观察它们是不是全等,你能得出什么规律?‎ 将所得三角形重叠在一起,发现完全重合,这说明这些三角形全等.‎ 提炼规律:‎ 两角和它们的夹边对应相等的两个三角形全等(可以简写成“角边角”或“ASA”).‎ 4‎ 问题3:我们刚才做的三角形是一个特殊三角形,随意画一个三角形ABC,能不能作一个△A′B′C′,使∠A=∠A′、∠B=∠B′、AB=A′B′呢?‎ ‎①先用量角器量出∠A与∠B的度数,再用直尺量出AB的边长.‎ ‎②画线段A′B′,使A′B′=AB.‎ ‎③分别以A′、B′为顶点,A′B′为一边作∠DA′B′、∠EB′A,使∠D′AB=∠CAB,∠EB′A′=∠CBA.‎ ‎④射线A′D与B′E交于一点,记为C′‎ 即可得到△A′B′C′.‎ 将△A′B′C′与△ABC重叠,发现两三角形全等.‎ 两角和它们的夹边对应相等的两三角形全等(可以简写成“角边角”或“ASA”).‎ 思考:在一个三角形中两角确定,第三个角一定确定.我们是不是可以不作图,用“ASA”推出“两角和其中一角的对边对应相等的两三角形全等”呢?‎ 探究问题4:‎ 如图,在△ABC和△DEF中,∠A=∠D,∠B=∠E,BC=EF,△ABC与△DEF全等吗?能利用角边角条件证明你的结论吗?‎ 证明:∵∠A+∠B+∠C=∠D+∠E+∠F=180°‎ ‎∠A=∠D,∠B=∠E ‎∴∠A+∠B=∠D+∠E ‎∴∠C=∠F 在△ABC和△DEF中 4‎ ‎∴△ABC≌△DEF(ASA).‎ 两个角和其中一角的对边对应相等的两个三角形全等(可以简写成“角角边”或“AAS”).‎ ‎[例]如下图,D在AB上,E在AC上,AB=AC,∠B=∠C.‎ 求证:AD=AE.‎ ‎[分析]AD和AE分别在△ADC和△AEB中,所以要证AD=AE,只需证明△ADC≌△AEB即可.‎ 证明:在△ADC和△AEB中 所以△ADC≌△AEB(ASA)‎ 所以AD=AE.‎ Ⅲ.随堂练习 ‎(一)课本练习1、2.‎ ‎(二)补充练习 图中的两个三角形全等吗?请说明理由.‎ 答案:图(1)中由“ASA”可证得△ACD≌△ACB.图(2)由“AAS”可证得△ACE≌△BDC.‎ Ⅳ.课时小结 至此,我们有五种判定三角形全等的方法:‎ ‎1.全等三角形的定义 ‎2.判定定理:边边边(SSS) 边角边(SAS) 角边角(ASA) 角角边(AAS)‎ 推证两三角形全等时,要善于观察,寻求对应相等的条件,从而获得解题途径.‎ Ⅴ.作业 ‎1.课本习题5、6、题. ‎ 4‎ 板书设计 ‎11.2.3 三角形全等的判定(三)‎ 一、两角一边 二、三角形全等的条件 ‎1.两角及其夹边对应相等的两三角形全等(ASA)‎ ‎2.两角和其中一角的对边对应相等的两三角形全等(AAS)‎ 4‎