- 28.91 KB
- 2021-11-01 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
- 1 -
14.2 乘法公式
第 3 课时
教学目标
1.知识与技能
会推导完全平方公式,并能运用公式进行简单的运算,形成推理能力.
2.过程与方法
利用多项式与多项式的乘法以及幂的意义,推导出完全平方公式.掌握完全平方公式的计算
方法.
3.情感、态度与价值观
培养学生观察、类比、发现的能力,体验数学活动充满着探索性和创造性.
重点难点
1.重点:完全平方公式的推导和应用.
2.难点:完全平方公式的应用.从多项式与多项式相乘入手,推导出完全平方公式,利用
几何模和割补面积的方法来验证公式的正确性.
教具准备
制作边长为 a 和 b 的正方形以及长为 a 宽为 b 的纸板.
教学方法
采用“情境──探究”教学方法,让学生在所创设的情境中领会完全平方公式的内涵.
教学过程
一、创设情境,导入新知
【激趣辅垫】
寓言故事:请一位学生讲一讲《滥竽充数》的寓言故事.
【学生活动】由一位学生上讲台讲《滥竽充数》的寓言故事,其他学生补充.
【教师活动】提出:你们从故事中学到了什么道理?(寓德于教)【学生发言】比喻没
有真才实学的人,混在行家里充数,或以次货充好货.
【教师引导】对!所以我们在以后的学习和工作中,千万别滥竽充数,一定要有真才实
学.好.今天同学们喊得很响亮,我要看看有没有南郭先生,请同学们完成下面的几道题:
(1)(2x-3)2; (2)(x+y)2; (3)(m+2n)2; (4)(2x-4)2.
【学生活动】先独立完成以上练习,再争取上讲台演练,
(1)(2x-3)2=4x2-12x+9; (2)(x+y)2=x2+2xy+y2;
(3)(m+2n)2=m2+4mn+4n2; (4)(2x-4)2=4x2-16x+16.
【教师活动】组织学生通过上面的运算结果中的每一项,观察、猜测它们的共同特点.
【学生活动】分四人小组,讨论.观察,探讨,发现规律如下:(1)右边第一项
是左边第一项的平方,右边最后一项是左边第二项的平方,中间一项是它们两个乘积的 2
倍.(2)左边如果为“+”号,右边全是“+”号,左边如果为“-”号,它们两个乘积的
2倍就为“-”号,其余都为“+”号.
【教师提问】那我们就利用简单的(a+b)2 与(a-b)2 进行验证,请同学们利用多项
- 2 -
式乘法以及幂的意义进行计算.
【学生活动】计算出(a+b)2=a2+2ab+b2;(a-b)2=a2-2ab+b2,完成后,一位学生上
讲台板演.
【教师活动】利用学生的板演内容,引出本节课的教学内容──完全平方公式.
归纳:完全平方公式:
(a+b)2=a2+2ab+b2;
(a-b)2=a2-2ab+b2.
语言叙述:两数和(或差)的平方,等于它们的平方和,加(或减)它们的积的 2 倍.
为了让学生直观理解公式,可做下面的拼图游戏.
【拼图游戏】
解释:(1)现有图 1 所示的三种规格的硬纸片各若干张,请你根据二次三项式 a2+2ab+b2,
选取相应种类和数量的硬纸片,拼出一个正方形,并探究所拼出的正方形的代数意义.
(2)你能根据图 2,谈一谈(a-b)2=a2-2ab+b2 吗?
【课堂活动】第(1)题由小组合作,在互动中完成拼图游戏,比一比,哪个四人小组
快?第(2)题,可以借助多媒体课件,直观地演示面积的变化,帮助学生联想到
(a-b)2=a2-b2-2b(a-b)=a2-2ab+b2.
二、范例学习,应用所学
【例 1】运用完全平方公式计算:
(1)(-x-y)2; (2)(2y- 1
3
)2
(1)解法一:(-x-y)2=[(-x)+(-y)] 2
=(-x)2+2(-x)(-y)+(-y)2
=x2+2xy+y2;
解法二:(-x-y)2=[-(x+y)] 2=(x+y)2=x2+2xy+y2.
(2)解法一:(2y- 1
3
)2=(2y)2-2·2y· 1
3
+( 1
3
)2
=4y2- 4
3
y+ 1
9
.
解法二:(2y- 1
3
)2=[2y+(- 1
3
)] 2
=(2y)2+2·2y·(- 1
3
)+(- 1
3
)2
- 3 -
=4y2- 4
3
y+ 1
9
.
【例 2】运用乘法公式计算 99992.
解:99992=(104-1)2=108-2×104+1
=100000000-20000+1
=99980001.
三、随堂练习,巩固新知
【基础训练】
(1)(
3
a -
2
b )2; (2)(2xy+3)2;
(3)(-ab+ 1
3
)2; (4)(7ab+2)2.
【拓展训练】
(1)(-2x-3)2; (2)(2x+3)2;
(3)(2x-3)2; (4)(3-2x)2.
【教师活动】在学生完成“拓展训练”之后,让学生观察一下结果,看看有什么规律.
【学生活动】分四人小组合作交流,寻找规律如下:把以上所有的题目都看作两个数的
和的完全平方(把减去一个数看作加上一个负数),如果两个数是相同的符号,则结果中的
每一项都是正的,如果两个数具有不同的符号,则它们乘积的 2 倍这一项就是负的.
【探研时空】
已知:x+y=-2,xy=3,求 x2+y2.
四、课堂总结,发展潜能
本节课学习了(a±b)2=a2±2ab+b2,两个乘法公式,在应用时,(1)要了解公式的结
构和特征.让住每一个公式左右两边的形式特征,记准指数和系数的符号;(2)掌握公式的
几何意义;(3)弄清公式的变化形式;(4)注意公式在应用中的条件;(5)应灵活地应用公
式来解题.
五、布置作业,专题突破
课本 P112 习题 14.2 第 3、4、8、9 题.
板书设计
15.2.2 完全平方公式(1)
1、完全平方公式 例:
(a±b)2=a2±2ab+b2 练习:
相关文档
- 8上导学案人教版八年级数学上册(全2021-11-01189页
- 2020八年级数学上册第十四章14.1.62021-11-012页
- 2020八年级数学上册 第十三章 轴对2021-11-015页
- 2020人教版八年级上数学第十五章分2021-11-01243页
- 2020八年级数学上册 第14章 整式的2021-11-0118页
- 人教版数学八年级上册《因式分解》2021-11-014页
- 数学冀教版八年级上册教案17-4直角2021-11-018页
- 八年级上数学课件《物体位置的确定2021-11-0117页
- 八年级上数学课件- 11-2-2 三角形2021-11-0116页
- 2019秋八年级数学上册综合滚动练习2021-11-0122页