• 54.00 KB
  • 2021-11-06 发布

九年级数学上册第21章二次根式21-2二次根式的乘除学案新版华东师大版

  • 2页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
第二十一章二次根式 ‎21.2二次根式的乘除 学习目标:‎ ‎1、了解最简二次根式的概念。‎ ‎2、会运用二次根式的乘除公式把不是最简二次根式的式子化成最简二次根式。‎ 重点:化去化母的根号。‎ 难点:二次根式的乘除运算。‎ 前置作业 ‎1、填空 ‎ (a≥0,b>0) (a≥0,b>0)‎ ‎2、计算 ‎(1)=_______ (2)÷=_______‎ 课堂探究 ‎1)= (2) = (3)÷=______(4)=_______‎ ‎2、化简 ‎(1)=_____ (2)=_____ (3)=_____‎ 思考1:观察课前预习中的(1)计算(2)化简中计算结算有何特点。‎ 思考2:这些结果中的二次根式有如下两个特点:‎ ‎(1)被开方数不含分母 (2)被开方数中不含能开得尽方的因数或因式 结论:最简二次根式的概念,被开方数中不含分母且不含能开得尽方的因数或因式的二次根式,叫做___________。‎ 试一试:计算:‎ ‎(1) (2) (3)‎ 解题思路:‎ 本题主要考查利用二次根式的乘除法法则化简二次根式。‎ 解题过程:‎ 方法1: 方法2:‎ 思考1:通过上面的计算,怎样化去二次根式中的分母的根号?‎ 归纳:分母有理化:化去分母中根号的变形叫做分母有理化。‎ 2‎ 方法:根据分式的基本性质,将分子和分母都乘分母的有理化因式(两个含有二次根式的代数式相乘)如果它们的积不含二次根式,就说这两个代数式互为有理化因式。‎ 做一做:将下列各分母中的根号或根号内的分母去掉。‎ ‎(1) (2) (3) (4)‎ 思路分析:将分母中的根号去掉及根号内的分母去掉是依据二次根式的除法公式 ‎(a≥0,b>0)及其逆运用来完成的分子、分母同乘(或除以)适当的数。‎ 能力提升 ‎1、练习,课本P11第2、3‎ ‎2、计算 ‎(1)× (2)×(3)(4)×÷‎ ‎3、选择题 下列二次根式中,是最简二次根式是( )‎ A、 B、 C、 D、‎ 课堂小结 ‎1、最简二次根式;‎ ‎(1)被开方数中的因数是整数,因式是整式;(2)被开方数中不含有能开得尽方的因数或因式;(3)分母不能含根号.‎ ‎2、二次根式的化简步骤:‎ ‎(1)一分:分解因数(因式)、平方数(式); ‎ ‎(2)二移:根据算术平方根的概念,把根号内的平方数或者平方式移到根号外面;‎ ‎(3)三化:化去被开方数中的分母 在进行二次根式的除法时时,把分母中的根号化去,叫做分母有理化.‎ ‎3、分母有理化的一般方法是:先将分母的二次根式化简,再选择一个适当的代数式同时乘以分子与分母,把分母的根号化去;特殊情况可用特殊的方法化去分母的根号,如约分.‎ ‎4、二次根式的运算中,最后结果中的二次根式要化为最简二次根式或整式.最二简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式.化简方法有多样,但都要化简。‎ 作业布置:‎ P9 习题21.2 第3题 第6(3)(4)题 2‎